Kaler Sankhipta Itihas
Brihat Bisforan theke Krishna Gahvar
From

A BRIEF HISTORY OF TIME-FROM BIG BANG TO BLACK HOLES

By

STEPHEN W.HAWKING.

কৃতজ্ঞতা স্বীকার

Ъ

read[] share

www.banglainternet.com

১৯৮২ সালে হার্তার্ডে লোমের (Loeb) বক্তৃতার্বদী দানের শর থেকেই আমি সিদ্ধান্ত করেছিলাম ছান এবং কাল বিষয়ে সাধারণের জন্য একটি বই লেখার চেটা করব। মহাবিশ্বর প্রথম অবস্থা এবং কৃষ্ণগহর সম্পর্কে ইতিপূর্বে অনেকগুলি বই লেখা হয়েছিল। স্টিফেন উইনবার্গের অত্যন্ত ভাল বই 'প্রথম তিন মিনিট' (The First Three Minutes) থেকে শুরু করে অত্যন্ত খারাপ বই পর্যন্ত (তবে অত্যন্ত খারাপ বইয়ের নামটা আমি করব না)। কিন্তু আমার মনে হয়েছিল যে সমন্ত প্রশ্ন আমার সৃষ্টিতত্ত্ব (cosmology) এবং কোয়ান্টাম তত্ত্ব (কণাবাদী তত্ত্ব) নিয়ে গবেষণার পথিকৃৎ, কোনো বইয়েই সে প্রশ্নগুলি নিয়ে স্টিক আলোচনা হয়নি। প্রশ্নগুলি হল : মহাবিশ্ব কোখেকে এসেছে? কি ভাবে এর শুরু? কেনই বা এর শুরু হল? মহাবিশ্ব কি শেষ হয়ে যাবে? যদি হয় তবে কি ভাবে হয়ে? এ প্রশ্নগুলি সম্পর্কে আমানের স্বারই উৎস্কা রয়েছে। কিন্তু আধুনিক বিজ্ঞান এমন জটিল (technical) হয়ে উঠেছে যে শুরুমাত্র তার বিবরণের জন্য ব্যবহুত গণিত আয়ত করতে পেরেছেন খুব স্বয়সংখ্যক বিশেষজ্ঞ। তবুও মহাবিশ্বের উৎপত্তি ও নিয়তি (fate) সম্পর্কিত মূলগত ধারণাগুলি গণিত ছাড়াই বলা যায়। এবং এমনভাবে বলা যায় যে যাদের বিশেষ বৈজ্ঞানিক শিক্ষা নেই, তারাও সেটা বৃশ্বতে পারবেন। এ বইয়ে আমি সেই চেন্তাই করেছি। সফল হয়েছি কি না সে বিচার করবেন পাঠক।

আমাকে একজন বলেছিলেন: এক একটি সমীকরণ বাবহার করার অর্থ হবে পাঠকের সংখ্যা অর্থেক করে কমে যাওয়া। সুতরাং আমি সিদ্ধান্ত করেছিলাম, কোনো সমীকরণই (equation) ব্যবহার করব না। শেষ পর্যন্ত আমি একটি সমীকরণ ব্যবহার করেছি—আইনস্টাইনের বিখ্যাত সমীকরণ $E = mc^2$ । আমার আশা, এর ফলে আমার ভাবী পাঠকদের অর্থেক ভয় পেয়ে পালিয়ে যাবেন না।

এ. এল. এস (ALS) অথবা মোটর নিউরন (Motor Neuron) ব্যাধির মতো একাট দুর্ভাগ্য হাড়া অন্য প্রায় সব ব্যাপারেই আমি ভাগ্যবান। আমার ব্রী জেন এবং আমার ছেলেমেয়ে রবার্ট, লুসি আর টিমির কাছে আমি যে সাহায্য পেয়েছি, তার ফলে আমার পক্ষে মোটামুটি স্বাভাবিক জীবন থাপন করা সম্ভব হয়েছে এবং সম্ভব হয়েছে ক্বম্জীবনে সাফল্য গাভ করা। ভাছাড়া আছে আর একটি সৌভাগ্য— আমি বেছে নিয়েছিগাম তাত্ত্বিক পদার্থবিদ্যা। তার সবটাই মনের ভিতরে কান্ত। সূতরাং আমার অসুস্থতা একটা কঠিন প্রতিবন্ধক হয়ে দাঁডায়নি। আমার বৈজ্ঞানিক সহক্ষীদের প্রত্যেকেই যথাসাধ্য সাহাধ্য করেছেন।

আমার কর্মজীবনের প্রথম ক্লাসিক্যাল পর্যায়ে আমার প্রধান সহচর এবং সহকর্মী ছিলেন রজার পেন্রোজ (Roger Penrose), রবার্ট গেরক (Robert Geroch), রাওন কার্টার (Brandon Carter) এবং জর্জ এলিস্ (George Ellis)। এরা আমাকে যা সাহায্য করেছেন এবং আমরা সবাই যিলে একসঙ্গে যে কাজ করেছি, তার জন্য আমি এঁদের কান্তে কৃতক্ত।

এই অধ্যায়ের সংক্ষিপ্রসার রয়েছে 'বৃহৎ মানে স্থান-কান্সের গঠন' (The Large Scale Structure of Spacetime) পুস্তকে। সে পুস্তকটি আমি আর এলিস্ লিখেছিলাম ১৯৭৩ সালে। আমার পাঠকদের প্রতি আমার উপদেশ আরো সংবাদ সংগ্রহের আশায় ও বইটা না পড়া। বইটা অভান্ত জটিল, বৈজ্ঞানিক কলাকৌশলে পূর্ণ এবং বেশ অপাঠা। আমার আশা— কি করে সহজে বোধগায়া হওয়ার মতো লিখতে হয়, ঐ বইটা লেখার পর এত দিনে আমি সেটা শিখেছি।

১৯৭৪ সাল থেকে আমার কর্মজীবনের থিতীয় পর্যায়ে অর্থাৎ "কোয়ান্টাম (কণাবাদী)" পর্যায়ে আমার প্রধান সহযোগী ছিলেন গ্যারী গিবন্স্ (Gary Gibbons), ডন্ পেজ্ (Don Page) এবং জিম্ হার্টল (Jim Hartle)। তাঁদের কাছে এবং আমার সবেষণাকারী ছাত্রদের কাছে আমার অনেক খণ। তাত্ত্বিক এবং ব্যবহারিক উভয় অর্থেই তাঁরা আমাকে প্রচুর সাহাত্য করেছেন। ছাত্রদের সাকে কান্ধ করা আমাকে বিরাট ভাবে উদ্বুদ্ধ করেছে। আমার আশা, আমি সে জনাই কোনো কানা গলিতে চুকে পড়িনি।

এই বইটির ব্যাপারে আমার ছাত্র ব্রায়ান হইটের (Brian Whitt) কাছ থেকে আমি প্রচুর সাহাব্য শেয়েছি। বইটির প্রথম খসড়া করার পর ১৯৮৫ সালে আমার নিউমোনিয়া হয়। আমার ট্রাকিওটমি (Tracheostomy- শ্বাসনালীর একটি অপারেশন) করতে হয়। ফলে আমার কথা বলার ক্রমভা পোপ পার এবং অনাের সঙ্গে বাক্যালাণও প্রায় অসম্ভব হয়ে পড়ে। আমি ভেবেছিলাম বইটি আমি শেব করতে পারব না। কিন্তু ব্রায়ান শুধুমাত্র পুনর্বিচারের জন্য আবার পাঠ করতেই সাহাব্য করেনি, উপরস্ক সে আমাকে পিডিং সেন্টার (Living Center) নামক যোগাযোগ শন্ধতি (communication programme) ব্যবহার করায়। এটা আবার আমাকে দান করেছিল ক্যালিফোর্নিয়ার সানিভেলের ওয়ার্ত্তস প্রাস ইনকরণােরেটেভ-এর (Words Plus Inc) ওয়াল্ট ওলটোজ (Walt Woltosz)। এর সাহাব্যে আমি বই এবং গাবেশাপত্র লিখতে পারি। তাছাড়া শ্পীচ্ প্রাস্ (Speech Plus) আমাকে যে স্পীচ্ সিনথেসাইজার (Speech Synthesizer) দান করেছেন তার সাহাব্যে আমি লোকজনের সঙ্গে কথাও বলতে পারি। এরাও ক্যালিফোর্নিয়ার সানিভেলের। ভেডিড মেসন (David Mason) আমার হইল চেয়ারে একটা সিনথেসাইজার এবং ছোট একটা ব্যক্তিগাড কম্পুটোর লাগিয়ে দিয়েছেন। এর ফলে বিরাট একটা পার্থক্য হয়েছে: আসলে আমার কর্ষ্তমর নাই হয়ে যাওয়ার আগে যা পার্রতাম এখন তার চাইতে ভাল ব্যক্যালাপ করতে গারি।

যাঁরা প্রথম খসড়াট দেখেছেন তাঁদের মধ্যে অনেকেই বইটির উন্নতির জন্য উপদেশ নিমেছেন। বিশেষ করে উপদেশ দিয়েছেন যান্টাম যুক্স্ (Bantam Books)। আমার এ বইটির সম্পাদক পিটার গাজার্ডি (Peter Guzzardi)। যে সব বিষয়ে ভাল করে ব্যাখ্যা করা হয়নি বলে তিনি ভেবেছিলেন: সেগুলি সম্পর্কে তিনি পাতার পর পাতা মন্তব্য আর প্রশ্ন পার্বিয়েছেন। যে সব জিনিব পান্টাতে হবে, তাঁর ঐ বিরাট তালিকা পেয়ে আমি রীতিমতো বিরক্ত হয়েছিলাম সন্দেহ নেই কিন্তু তিনি ঠিকই করেছিলেন। আমার নাকটা মাটিতে ঘষে দেওয়ার ফলে বইটা অনেক ভাল হয়েছে এ বিষয়ে আমি নিশ্চিত।

ানার সহকারী কলিন উইলিয়াম্স্ (Colin Williams), ডেভিড্ টমাস্ (David Thomas) এবং রেমণ্ড লাফ্লাম (Raymond Laflamme), আমার সেকেটারী জুডি ফেলা (Judy Fella), আন রালফ্ (Ann Ralph), চেরিল বিলিংটন (Cheryl Billington) এবং সু মাসে (Sue Masey) এবং আমার নার্সদের দলের কাছে আমি কৃতজ্ঞ। আমার গবেষণা এবং চিকিৎসা ব্যবদ গনভিল (Gonville) এবং কাইয়াস কলেজ (Caius College), দি সামেল এয়াও এন্জিনিয়ারীং রিসার্চ কাউন্সিল (The Science and Engineering Research Council) এবং লেভারহিউম্ (Leverholme), ম্যাক্ আর্থার (Mc Arthur), ন্ফিড (Nuffield) এবং রালফ স্মিথ ফাউন্ডেশান (Ralph Smith Foundations)—এরা যদি আমায় অর্থ দান না করতেন, তা হলে এ সমস্ত কাজ সম্ভব হোত না। আমি স্বার কাছেই অত্যন্ত কৃতজ্ঞ।

স্টিফেন হকিং ২০ শে অস্টোবর, ১৯৮৭

এই লেখকের অন্য বই:

কৃষ্ণগহুর, শিশু মহাবিশ্ব

স্টিফেন হকিং

ও অন্যান্য রচনা

৮০ টাকা

অনু: শত্ৰুজিৎ দাশগুপ্ত

ভূমিকা

বিশ্ব সম্পর্কে প্রায় কিছুমাত্রই না বুঝে আমরা দৈনন্দিন জীবন যাপন, করি। যে যন্ত্র থেকে সূর্যালোক উৎপন্ন হচ্ছে এবং জীবন সম্ভব হচ্ছে, যে মহাকর্ব আমাদের পৃথিবীর সঙ্গে আটকে রাখে [তা না হলে পৃথিবী আমাদের পার্টুর যতো ধূরিয়ে মহাবিশ্বের হানে (space) নিক্ষেপ করত] কিয়া যে পরমাণু দিয়ে আমরা তৈরী এবং যার ছিরত্বের উপরে আমরা মূলগতভাগে নির্ভরণীল, সে সম্পর্কে আমরা কিছুই ভাবি না। প্রকৃতিকে আমরা যেমন দেবি, প্রকৃতি কেন তেমন হল, মহাবিশ্ব কোভোকে এল, কিয়া মহাবিশ্ব কি সব সময় এখানে ছিল, কালমোত কি কখনো পশ্চাদ্যামী হবে এবং কার্যকারণের পূর্বগামী হবে কিয়া মানুষের পক্ষে যা জানা সভব তার কি একটা চরম সীমা আছে?— শিশুরা ছাড়া কেউই এ সমস্ত চিন্তায় বিশেষ কালক্ষেপ করেন না। (শিশুদের জান এত অল্প যে তারা এই গুরুত্বপূর্ণ প্রশ্নগুলি না করে পারে না।) আবার এমন কিছু শিশুর সঙ্গে আমার দেখা হয়েছে, যারা প্রশ্ন করেছে কৃষ্ণগত্তর দেখতে কেমন, পদার্থের ক্ষুত্রতম অংশ কি? আমরা কেন অতীতই মনে রাখি ভবিষাং কেন মনে রাখি না? আগে বিশ্বালা (chaos) ছিল, এখন মনে হয় শৃশ্বালা রয়েছে— এ রকম কেন হল? একটা মহাবিশ্বের অভিত্ব কেন রয়েছে?

আমাদের সমাজে এখনো রীতি হল— বাবা মা কিশ্বা শিক্ষকরা এ প্রশ্নের উত্তরে একটু ঘাড় বেঁকান। কিল্লা অম্পষ্ট ধর্মীয় ধারণার সাহাঘা নেন। এ সমস্ত প্রশ্নে কেউ অম্বস্তি বোধ করেন। তার কারণ মানুষের বোধশক্তির সীমারেখা এই সধ প্রশ্নগুলি বেশ ম্পষ্টভাবে ধরিয়ে দেয়।

কিন্ত দর্শন এবং বিজ্ঞানের অগ্রগতির অনেকটাই হয়েছে এই সমস্ত প্রশ্ন দ্বারা তাড়িত হয়ে। ব্যক্তদের ভিতরে হাঁরা এই সমস্ত প্রশ্ন করতে ইচ্চুক তাঁদের সংখ্যা বাড়ছে। অনেক সময় তাঁরা কিছু আশ্চর্যজনক উত্তর পান। পরমাণু এবং তারকা থেকে সমান দূরত্বে আমাদের অবস্থান। অভিকৃষ্ণ এবং অভিবৃহৎকে নিয়ে আমাদের অনুসন্ধানের সীমারেখা আমরা বাড়িয়ে চলেছি।

১৯৭৪ সালের বসস্ত কালে, ভাইকিং মহাকাশফান মঞ্চল এতে অবভরণের প্রায় দু'বছর

আগে আমি ইংল্যাতে গণ্ডনের রয়াল সোমাইটির উদ্যোগে আহত একটি সভায় উপস্থিত ternet.com
ছিলাম। গভার উদ্দেশ্য ছিল পৃথিবী বহির্তৃত জীব অনুসন্ধান কিভাবে করা যায় সে গ্রন্থ নিয়ে
আলোচনা। কমি খাওয়ার ফাঁকে আমি দেখলাম, পাশের হলে আরো অনেক বড় একটা
সভা হচ্ছে। কৌতৃহলের বলে আমি সেধানে চুকলাম। অচিরে বুঝতে পারলাম আমি একটা
প্রাচীনরীতি দেখছি। পৃথিবীর প্রাচীনতম বিদম্ম জনসংগঠনগুলির একটি হল রয়াল সোসাইটি
(Royal Society)। সেখানে হচ্ছে নতুন ফেলোর অভিবেক। সামনের সারিতে হইলচেয়ারে
বসে একজন তরল খুব ঘীরে একটি খাভায় নাম সই করছিলেন। সেই খাতার প্রথম দিকটায়
ছিল আইজাক নিউটনের স্বাক্ষর। স্বাক্ষর শেষ হওয়ার সঙ্গে তাকে বিরাটভাবে অভিনন্দিত
করা হল। এমন কি তখনও স্টিয়েন ছকিং (Stephen Hawking) ছিলেন একজন প্রবাদ
পুরুষ।

হকিং এখন কেপ্রিল্প বিশ্ববিদ্যালয়ে গণিত শান্তের পুকেসিয়ান অধ্যাপক (Lucasian Professor)। এক সময় নিউটন ছিলেন এই পদের অধিকারী। এবং পরে এ পদে ছিলেন পি. এ. এম. ডিরাক (P.A.M. Dirac)। এরা পুলনে ছিলেন অতিবৃহৎ এবং অতিকৃপ্ত নিয়ে বিশ্বাভ গ্রবেষক। হকিং তাঁদের যোগ্য উত্তরস্বি। এর এই প্রথম বই থেকে সাধারণ পাঠক অনেক কিছুই পাবেন। এ বইয়ের বিরাট ব্যাপকত্ব যেমন আকর্ষণীয়, তেমন আকর্ষণীয় লেখকের মানসিক ক্রিয়া সম্পকীয় আভাস। পদার্থবিদ্যা, জ্যোতির্বিদ্যা, মহাবিশ্বতত্ব (Cosmology) এবং সাহসের সীমান্ত এ বইয়ে সহজভাবে প্রকাশিত হয়েছে।

এ বইটা ইশ্বর সম্পর্কেও বটে। হয়তো ইশ্বরের অনস্তিত্ব সম্পর্কে। এর পাতায় পাতায় ইশ্বর রয়েছেন। আইনস্টাইনের বিখ্যাত প্রশ্ন হিল, মহাবিশ্ব সৃষ্টি করার সময় ইশ্বরের কি অন্যরক্ষ কিছু করায় সন্তাবনা ছিল? ছকিং এ প্রশ্নের উত্তর দেওয়ার চেন্টা করেছেন। হকিং ম্পাইই কলছেন তিনি ইশ্বরের মন বুঝতে চেন্টা করছেন। তার প্রচেন্টায় তিনি এ পর্যন্ত যে সিদ্ধান্তে এসেছেন, সে সিদ্ধান্ত অপ্রত্যাশিত: এই মহাবিশ্বের হানে কোনো কিনারা (edge) নেই, কালে কোনো শুরু কিলা শেষ নেই এবং শ্রেষ্টার করায় মতো কিছু নেই।

state of the section of the section which is seen that the section is

rging space and police instant a construction of

restant of the color of the

কার্ল সাগান কর্ণেল বিশ্ববিদ্যালয় ইঘাকা, নিউইয়র্ক

অনুবাদকের নিবেদন

অধ্যাপক স্টিফেন হকিং-এর "A Brief History of Time"-এর বাংলা অনুবাদ "কালের সংক্রিপ্ত ইতিহাস" প্রকাশিত হল। বাউলমন প্রকাশনের সাধারণের জন্য বাংলায় বিজ্ঞানের গুরুত্বপূর্ণ পুত্তক প্রকাশ প্রকল্পে এটা নবতম সংযোজন।

আমাদের আগেকার বিজ্ঞানের বইয়ের পরিকল্পনার সঙ্গে এ বইয়ের পরিকল্পনায় অনেকটা মিল রয়েছে— মিল রয়েছে সুবিধা অসুবিধায়ও।

আইনস্টাইন পরিভাষার বিষর্তন সম্পর্কে একটি ইঙ্গিত দিয়েছেন। তাঁর মত: সাধারণ কথা ভাষা থেকে বিজ্ঞানের ভাষা গ্রহণ করা যায়। প্রথমে হয়তো একই শব্দের সাধারণ ব্যবহার এক বৈজ্ঞানিক ব্যবহারে কোনো পার্থক্য থাকে না। কিছু সে শব্দ পরিভাষায় রূপান্তরিত হলে তার একটি নির্দিষ্ট নিশ্চিত অর্থ এবং সংজ্ঞা খিতিলাভ করে। আইনস্টাইনের এই ইঙ্গিত অনুসরণ করায় আমাদের কিছু অসুবিধা আছে। ইংরাজী এবং অন্যান্য যে সমস্ত ভাষায় সৃন্ধনশীল বিজ্ঞান পেখা হয়েছে সেই সমস্ত ভাষায় বৈজ্ঞানিক পরিভাষার এই ধরনের স্বাভাবিক বিষর্তন হয়েছে। তাহাভা পাশ্চাভা দেশে গ্রীক, স্যাটিন ভাষার সাহায্যও নেওয়া হয়েছে। তবে সে সমস্ত ক্ষেত্রে শুরুতেই পারিভাষিক শব্দের নির্দিষ্ট সংজ্ঞা নির্দেশ করা হয়েছে।

আমাদের দেশের বৈজ্ঞানিকরা বিজ্ঞান চর্চায় মাতৃভাষা ব্যবহার করেন না। যদিও আজকাল অনেক স্থূলে, কলেজে আর বিশ্ববিদ্যালয়ে বহু বিষয়ে স্নাতকোত্তর স্তর পর্যন্ত মাতৃভাষার মাধাম ব্যবহারের সুযোগ রয়েছে, তবুও সৃজনশীল বিজ্ঞান, গবেষণাপত্র ইত্যাদি মাতৃভাষায় হয় না বললেই চলে। ভাহাড়া মাতৃভাষায় বিজ্ঞান বিষয়ক পত্রপত্রিকাও বিশেষ নেই। সেইজন্য আমাদের বাংলাভাষায় বিজ্ঞান চর্চায় ভাষাগত অসুবিধা খুবই বেশী। বাংলাভিষীদের বৈজ্ঞানিক পরিভাষা যতদিন না সৃস্থিত হবে ততদিন এই অসুবিধা চলবে।

আমরা প্রধানত পরিচিত পরিভাষা কোষগুলির সাহায্য নিতে চেষ্টা করেছি। এগুলির ভিতর উল্লেখযোগ্য: শ্রন্ধেয় দেবীপ্রসাদ রায়চৌধুরীর 'পদার্থবিদারে পরিভাষা', 'সংসদ অভিধান', 'চলন্তিকা', কলিকাতা বিশ্ববিদ্যালয়কৃত 'পরিভাষা', দিল্লী খেকে প্রকাশিত 'হিন্দী পরিভাষা কোন'— ইত্যাদি। কিন্ত কিছু কিছু ক্ষেত্রে অনুধানককে পরিভাষা তৈরী করতে হয়েছে। অনুধানকের করা িি ি ে ে ে ে ে ে বিরুদ্ধে সম্পেহ থেকে যায়, সেইজনা ধারধার বন্ধনীতে করেছেন মে ক্ষুর্গান্ধী শব্দ দিতে হয়েছে। এখানে দু একটি উদাহরণ দেওয়া বোধ হয় অপ্রাসন্ধিক হয়েব না। Big Bang-এর বাংলা করা হয়েছে বৃহৎ বিশ্ফোরণ। Big Crunch-এর বাংলা করা হয়েছে বৃহৎ সম্ভোচন। কোনোটিই আক্ষরিক হয়নি। কিন্ত অনুধানককে তার ক্ষমতা অনুধারে যতটা সন্তব অর্থের কাহাকাছি বেতে হয়েছে। সম্প্রশারণের হার যেখানে অভিক্রত গোণানে অধ্যাপক হকিং ব্যবহার করেছেন Inflationary শব্দ। অনুধানককে ব্যবহার করতে আই অনুধান কর্ম হয়েছে 'অভিশ্বীতি' শব্দ।

অবশ্য অনুবাদকের এক্ষেত্রে আচার্য সভোক্রনাথ বসুর শরণ নেওয়া সম্ভব। তিনি বলেছিলেন লিখে যেতে— পরিভাষা সম্পর্কে চিন্তা না করতে।

বিজ্ঞান সম্পর্কিত কোনো বইই অধ্যাপক হকিং-এর এই বইটির মতো জনপ্রিয় হয়নি। আমরা আশা করি বাংলা ভাষাতেও সে জনপ্রিয়তা অকুশ্ল থাকবে।

বিংশ শতানীতে পদার্থবিদ্যার দৃটি শুস্ত: অপেক্ষবাদ এবং কণাবাদী বলবিদ্যা। এর আগে আমরা আইনস্টাইনের "অপেক্ষবাদ: বিশিষ্ট ও ব্যাপকতম্ব" এবং বার্ট্রাও রামেলের "অপেক্ষবাদের অ আ ক শ" বাংলায় প্রকাশ করেছি। এই দৃটি বইরেরই বিষয়বন্ত অপেক্ষবাদ। আমাদের প্রকাশিত আইনস্টাইন-ইনফেল্ডের "পদার্থবিদ্যার বির্বতন"-এ কণাবাদী বলবিদ্যা নিয়ে আলোচনা খুবই কম।

আয়াদের ইচ্ছা কণাবদি বলবিদ্যা সম্পতে সাধারণ মানুষের পাঠা একটি পুস্তক প্রকাশ করা। কিন্তু এখনো আমরা সে ব্যাপারে খুব বেশী এগোতে পারি নি।

অধ্যাপক হকিং-এর এই বইটিতে কণাবাদী বসবিদ্যা, হাইজেনবার্গের অনিশ্চয়তাবাদ ইত্যাদি নিয়ে বেশ খানিকটা আপোচনা রয়েছে। আশা করি এ আলোচনা এক দিকে পাঠকদের কৌতৃহল খানিকটা পরিতৃপ্ত করবে আবার অনাদিকে বাড়িয়ে তুলবে তানের অনুসন্ধিৎসা।

মাতৃভাষায় বিজ্ঞান প্রচারিত এবং প্রসারিত হয়নি অঘচ স্থান-বিজ্ঞানে জাতি হিসাবে অগ্রগতি হয়েছে এরকম কোনো দেশের অন্তিত্ব আমার জানা নেই। বাউসমন-এর বাংলাভাষার বিজ্ঞান প্রচার প্রচেষ্টার উদ্দেশ্য বাংলাভাষীদের ভিতর বৈজ্ঞানিক কৌতৃহল সৃষ্টি কয়। আমাদের আশা, এ প্রচেষ্টা জাতি হিসাবে আমাদের বৈজ্ঞানিক অগ্রগতিতে সাহায্য করবে। পশ্চিমবঙ্গ সরকার মাতৃভাষায় বিজ্ঞান শিক্ষার যে প্রচেষ্টা করছেন এই প্রসঙ্গে তার প্রশংসা করতেই হয়। তবে শুধুমার্য সরকারী প্রচেষ্টা ছাড়াও বেসরকারী প্রচেষ্টারও যে একটি গুরুত্বপূর্ণ হান রমেছে সে বিষয়ে সন্দেহের অবকাশ নেই।

পণ্ডিতেয় বলেন, একটি জঙ্গলকে চিনতে হলে যেমন গোটা জঙ্গলকে দেখতে হয় তেমনি দেখতে হয় এককভাবে গাছগুলিকেও। এই বইয়ে কালের সংক্ষিপ্ত ইতিহাস ব্যাখ্যা করতে গিয়ে অধ্যাপক হকিং এক দিকে যেমন বিজ্ঞানের গোটা জঙ্গলের আংশিক ছায়াপাত করেছেন তেমনি বহুক্ষেত্রে অনেক একক গাছ অর্থাৎ জটিল তত্ত্বও তিনি বৃঝিয়েছেন।

এই প্রকল্পে বাউলমন প্রকাশন সাধারশের উপযুক্ত সহজবোধ্য বিজ্ঞানের বই বেছে নিয়েছে। সেইজন্য সব সময়ই আমাদের চেষ্টা গাণিতিক জটিশতা এড়িয়ে যাওয়ার। এই বইটিও কোনো ব্যতিক্রম নয়। E = mc² ছাড়া কোনো সমীকরণ এই বইয়ে বাবহার করা হয়নি।

আইনস্টাইন বলেছেন, গণিত বিজ্ঞানীদের ভাষা হলেও সে ভাষাকে সাধারণের ভাষায় অনুবাদ করা অসন্তব নয়। অধ্যাপক হকিং তাঁর পূর্বসূরি নির্দিষ্ট পত্ন পরিত্যাগ করেন নি। তিনি বোধ করেছেন বিজ্ঞান মানুষের জনা— সাধারণ মানুষের ভাষায় বিজ্ঞান অনুবাদ প্রয়োজন বৈজ্ঞানিক দৃষ্টিভঙ্গির প্রচার এবং প্রসারের স্বার্থেই। আমরা আশা করব অধ্যাপক হকিং বিজ্ঞানের সঙ্গে মানুষের আত্মিক সম্পর্ক স্থাপনের এই প্রচেষ্টাকে ভবিষাতে আরো বেশী এগিয়ে নিয়ে যাবেন।

বইটি পড়তে পড়তে অনেক সময়, সন্দেহ হয় কোনো কোনো প্রসঙ্গে তিনি কি জটিলতা এড়ানের চেষ্টায় গভীরতাকেও এড়িয়ে গিয়েছেন? কিন্তু পুরো বইটি পড়লে মনে হয় বিষয়টির উপর তার অধিকার এত গভীর যে তিনি যে কোনো প্রসঙ্গকেই সাধারণ মানুষের ব্যোধগম্য সরলতম ভাষায় প্রকাশ করতে পারেন। আশা করি ভবিষাতে তিনি আরও বই লিখবেন এবং তখন তিনি জটিলতম প্রসঙ্গকে আমাদের মতো স্বন্ধবৃদ্ধিমানুষের জন্য সরলতম রূপ প্রকাশ করবেন। বইটি পড়লে যে কোনো পাঠকই বৃথতে পারবেন লেখকের ভাষাজ্ঞান এবং রসবোধ বহু পেশাদার সাহিত্যিকের চাইতে অনেক বেশী।

পাশ্চাত্য দেশের বৈজ্ঞানিক দৃষ্টিভঙ্গির পশ্চাংপটে রয়েছে ইহনী, ফ্রীশ্চান চিন্তাধারার প্রভাব। সেই চিন্তাধারা অনুসারে ঈশ্বর একদিন বিশ্বসৃষ্টি করতে শুরু করেন এবং হ'দিনে সৃষ্টিকর্ম শেষ করে সপ্রম নিনে বিদ্রাম গ্রহণ করেন। আমাদের ভারতীয়দের বৈজ্ঞানিক দর্শন প্রধানত সাংখ্যভিত্তিক, সেই দর্শনে ঈশ্বরকে এরকম কোনো প্রাথান্য দেওয়া হয়নি। সাংখ্যকাররা বঙ্গছেন, প্রমাণ না থাকার দরুন ঈশ্বরকল্পন অসিদ্ধ। সেজন্য সাংখ্যের চতুর্বিংশতি তত্ত্বে ঈশ্বরের কোনো স্থান নেই। অনেক পণ্ডিতের মতে সাংখ্যের পঞ্চবিংশতত্ত্ব অর্থাৎ পুরুষ সম্পর্কীয় ধারণাও প্রক্ষিপ্ত কারণ সাংখ্যের মূল চিন্তাধারার সঙ্গে তার কোনো সঙ্গতি নেই।

সাংখ্যের সৃষ্টিতত্ত্ব বিবর্তনবিশ্তিক। এ দর্শনের মতে প্রকৃতির বিবর্তনের ফলেই মহাবিশ্ব এবং জীবজগৎ সৃষ্টি হয়েছে। মহাবিশ্বের সৃষ্টি যেমন হয়েছে, স্থিতি যেমন চলছে প্রলয়ও তেমনি হবে। প্রলয়ের পর আবার সৃষ্টি হতে পারে। অধ্যাপক হকিং-এর মহাবিশ্বতত্ত্বে আমরা সাংখ্যের ছামা বেশ স্পষ্টই দেখতে পাই।

সাংখ্যের মতে জ্ঞানেন্দ্রিয় এবং কমেন্দ্রিয়ের সার পদার্থ নিয়ে মন গঠিত। পাশ্চাতা জড়-বিজ্ঞানের অধিকাংশ পশুতের মতো অধ্যাপক হকিংও মন সম্পর্কে কোনো মন্তব্য করেন নি। আসলে আধুনিক জড়-বিজ্ঞানের অভিমুখ সম্পূর্ণ ব্যক্তি-নিরপেক্ষ বন্তনিষ্ঠ জ্ঞান আহরণ করা। এক্ষেত্রে ব্যক্তি শব্দের অর্থ ব্যক্তির মন। জড়-বিজ্ঞানের এই আচরণে আয়াদের অর্থাৎ মানসিক চিকিৎসকদের অনেক সময়ই 10 11 01.00 নিজেদের বিজ্ঞান-জগৎ থেকে বিচ্ছিন্ন মনে হয়। এই দৃষ্টিভঙ্গি কি ইহুদী ক্রীশ্চান শশ্চাৎপটের ফল ?

আমাদের মনে হয় মনেরও আইনস্টাইনের বিখ্যাত সমীকরণ E = mc²-এর অন্তর্ভুক্ত
হওয়া প্রয়োজন। যদি অন্তর্ভুক্ত হয় তা হলে স্বভাবতই মন এবং মানসিক ক্রিয়াগুলি শক্তি-বস্ত
সাংততাকে (continuum) স্থান পাওয়ার যোগ্য। ভারতীয় বিজ্ঞানের দর্শন কিন্তু মনকে সে
স্থান অনেক দিন আগেই দিয়েছে। বিশেষ করে সাংখ্যের তন্মত্রে সম্পর্কীয় চিন্তাধারা স্পাইতই
জড় জগতের সঙ্গে অনুভূতির সেতু বন্ধন করেছে। আমরা জানি অনুভূতি একটি প্রধান মানসিক
ক্রিয়া।

তবে সাংখ্য বিজ্ঞান নয়। শুধুমাত্র দর্শন। বিজ্ঞান সূষ্ট্র যুক্তি এবং বাস্তব জগৎ সম্পর্কীয় জ্ঞানের একটি সময়র (? পরীক্ষামূলক)। এই অর্থে সাংখ্য বিজ্ঞান পর্যায়ে আসে না। তবে দর্শন পর্যায়ে নিশ্চয় আসে। আমরা জানি সমগ্র জ্ঞানের আদি জনক দর্শনশাস্ত্র।

বিজ্ঞানের আলোচনায় মনের অনস্তিত্ব কিছু সমস্যার সৃষ্টি করে। মানব জ্ঞানের প্রধান উৎস অনুভূতি। মন অংশ গ্রহণ না করজে অনুভূতি অসম্পূর্ণ থাকে। একটা উদাহরণ দিলে আমার বস্তব্য অনেক স্পষ্ট হবে।

আমাদের অজিপটে আঘাত করে বিদ্যুৎ-চুম্বকীয় তরঙ্গ। সেখান থেকে মতিকে যা পৌহায় সেটা স্বায়ু স্পন্দন মাত্র। কিন্তু আমরা কথনো অনুভব করি বর্ণ, কথনো আকার আবার কথনো রূপ। আমার সামনে যদি কেউ দাঁড়িয়ে থাকে তাহলে অক্ষিপটে তার হায়া পড়ে উপ্টো। অর্থাৎ হায়ার মাথাটা থাকে নিচ্নে দিকে কিন্তু পা-টা থাকে উপর দিকে। অথচ আমি অনুভব করি লোকটা সোজা দাঁড়িয়ে আছে। এই সংশোধনকে আমরা মানসিক ত্রিয়াই বলি। এই রকম অসংখা ক্রিয়াকে মানসিক ত্রিয়া বলা হয়। তার ভিতর কিছু চেতন, কিছু আচেতন, কিছু আপেকি চেতন। অনেকে মনে কয়েন, চেতনাই মনের মূলগত প্রকাশ। আসলে এই রকম অসংখা ক্রিয়ার পিওকৃত রূপের নাম মন। না, মন বলে দেহের কোনো বাস্তব অঙ্গ নেই। মানুবই এই জাতীয় বছক্রিয়ার পিওকৃত ধারণার নাম দিয়েছে মন। বহক্রিয়া আমরা দেখতে পাই সূত্রাং প্রকল্প হিসাবে মেনে নেওয়া হয়েছে তার একটি (? একাধিক) কর্তাও আছে। সেই কর্তার নাম দেওয়া হয়েছে মন। সূত্রাং শক্তি-বন্তু সাংতত্যকের বহু প্রকল্পর একটি পিওকৃত রূপ। এই মনপিতের অনেক উপাদান চেতনাকে যা দিতে পারে আবার অনেক উপাদান চেতনাকে স্পর্ণমাত্র না করতে পারে।

এর সঙ্গে তুলনা করা যায় বিদাৎ-চুম্বকীয় তরঙ্গের। কোনো তরঙ্গ আমাদের দেহে তাপের অনুভৃতি সৃষ্টি করে আবার কোনো তরঙ্গ আমাদের চেতনায় গৃষ্টির অনুভৃতি সৃষ্টি করে। আবার তারই ভিতরে এক ধরনের তরঙ্গ এক এক ধরনের রঙের অনুভৃতি সৃষ্টি করে। এমন অনেক বিদাৎ-চুম্বকীয় তরঙ্গ আছে যারা কোনো অনুভৃতিই সৃষ্টি করে না।

কিছু আমাদের কল্পনে এদের পিণ্ডফৃত নাম বিদ্যুৎ-চুম্বকীয় তরঙ্গ।

তেমনি হয়তো আমরা এক গোষ্ঠীর বহু শক্তির পিগুকৃত কল্পনের নাম দিয়েছি মন।

মনের অবস্থার উপর আমাদের অনুভূতির রূপ অনেকটাই নির্ভর করে। মানসিক রোগ সম্পর্কীয় যে কোনো পাঠাপুস্তকেই এ ধরনের ভূরিভূরি উদাহরণ পাওয়া যাবে। উদাহরণ: এমন মানসিক অবস্থা হতে পারে যে অবস্থায় সাধারণ মানুষ যাকে দ্রস্তবা রঙ বলে অনুভব করে সে অবস্থায় বিশেষ মানুষটি তাকে শ্রোতধা শব্দ বলে অনুভব করবে।

সূতরাং, মন সম্পর্কে সম্যক আলোচনা না থাকলে বহির্বিশ্ব তথা মহাবিশ্ব বুখতে অসুবিধা হবে সম্পেহ নেই।

বিভিন্ন জাতি, বিভিন্ন শ্রেণী, বিভিন্ন যুগের মানুষেরও বৃষ্টিভঙ্গিতে পার্থক্য হবে। তার কারণ তাদের পরিবেশে পার্থক্য থাকলে মনের গঠনেও পার্থক্য থাকবে। অবচ এই পার্থক্য থাকা সম্বেও আমাদের হতে হবে বৈজ্ঞানিক সত্যের নিকটতম।

সেজনা মন সম্পর্কে বৈজ্ঞানিক দৃষ্টিভঙ্গি কোনো বিজ্ঞানকট্মীই অস্বীকার করতে পারে না।

আবিষ্টোটলের বিশ্বদৃষ্টি, গ্যালিঞ্চিও-নিউটনের বিশ্বদৃষ্টি এবং আইনস্টাইনের বিশ্বদৃষ্টিতে যে পার্থকা তার কারণ কি শুধুমাত্র তাঁদের প্রতিভা ? তাঁদের সামাজিক পরিপ্রেক্ষিত এবং তার ফলস্বরূপ তাঁদের মানসিক গঠনের যে পার্থকা তার সঙ্গে কি তাঁদের বিশ্বদৃষ্টির কোনো সম্পর্ক নেই ?

এক জায়গায় লেখক আধুনিক গাণিতিক পদার্থবিদ্যাভিত্তিক হিসাব করে দেখিয়েছেন: যে হেতু মহাবিশ্বের পরা এবং অপরা শক্তি প্রায় সমান সমান সূতরাং যোগ বিয়োগ করলে দেখা যাবে যোগফল শূনা। ব্যাপারটা প্রায় মায়াবাদ কিল্পা শূন্যবাদের পর্যায়ে এসে পড়ে।

অধ্যাপক হকিংয়ের গণিতশান্ত্রকে "দূর হইতে গড় করিবার" যুক্তি সহদ্ধবোধ্য। গাণিতিক সমীকরণ থাকলে অনেক পাঠকই পলায়ন করতেন সন্দেহ নেই। সে সম্পর্কে কোনো সন্দেহ থাকলেও বাংলা ভাষার অনুবাদক যে পলায়নান পাঠকদের পথপ্রদর্শক হোত সে বিষয়ে সন্দেহের কোনো অবকাশ নেই।

বিজ্ঞানের ডিন্তি সুষ্ঠু যুক্তি এবং বিশ্ব সম্পর্কে সমাক বাস্তব জ্ঞানের সমন্বয়। কিন্তু যুক্তি অর্থাং গণিত যদি বাস্তব মহাবিশ্বকেই অনুশ্য করে দেয়, তাহলে সমারু কি নিজেদের নিরাপদ বোধ করবে?

তবে ভয় পাওয়ার কিছু নেই। শব্ধরাচার্যের মায়াবাদ আর বৌদ্ধদের শূনাবাদ সত্ত্বেও মানুষের জীবন ধারা তার নিজের হুন্দেই চলে এসেছে।

গদার্থবিদ্যার সার্বিক ঐক্যবদ্ধ তম্বু আবিষ্ঠার সম্পর্কে অধ্যাপক হৃকিং খুবই আশাবদী।

সে তত্ত্বের আগমনী পদধ্যনি তিনি স্পষ্টই শুনতে পাচ্ছেন। কিন্তু সম্প্রসারণশীল মহাবিশ্ব সদা পরিবর্তনশীল। মহাবিশ্ব এক না একাধিক সে সম্পর্কেও বিজ্ঞান নিশ্চিত নয়। সূত্রাং, মহাবিশ্ব সম্পর্কে স্থিরতত্ত্ব আবিষ্কার কি সম্ভব ?

যদি আমরা মনে রাখি জড় এবং জীবের সমন্বয়েই মহাবিশ্ব এবং মানসিক ক্রিয়াও মহাবিশ্বর অবিজেন্য অংশ তা হলে আমাদের মনে সন্দেহ আরো ঘনীভূত হয়। বিশেষ করে প্রাণ এবং মন সম্পর্কেও বিজ্ঞান নিশ্চিত নয়। সূতরাং মহাবিশ্ব সম্পর্কে কোনো সঠিক বৈজ্ঞানিক তত্ত্বের অভাব মনে রাখলে সে সন্দেহ আরো বৃদ্ধি পায়।

অধ্যাপক হকিংয়ের মস্তিকের সংবাদ সারা বিশ্বেরই জানা। কিন্ত হদয়ের সংবাদ কি স্বাই জানে ? আমরা কিন্ত জানি। আমরা শব্দের অর্থ অনুবাদক আর বাউসমন প্রকাশন।

অধ্যাপক হকিং কেপ্লিন্তে লুকেসিয়ান অধ্যাপকের পদে রয়েছেন। এ পদে স্যার আইআক নিউটনও ছিলেন। কিন্তু ব্যক্তি হিসাবে দুজনের পার্থকা লক্ষণীয়। হৃদয়বান বলে কোনো খ্যাতি নিউটনের ছিল না।

কিন্ত অধ্যাপক হকিং?

আমাদের এ অনুবাদ প্রায় দূ বছর আগে প্রেসে দেওয়ার জনা তৈরী ছিল। কিন্ত প্রকাশকদের অনুমতি নিভে হলে যে পরিমাণ ভলার নিতে হোত তাতে বইটা অনেকের নাগালের বাইরে চলে যেত।

তথন আমরা শরণাপর হই এয়নছু জন্স্ নামে একজন ইংরাজ বন্ধুর। পেশার তিনি মানসিক রোগের চিকিৎসক। তিনিই যোগাযোগ করেন অধ্যাপক হকিংয়ের সঙ্গে। অধ্যাপক হকিং এই বাংলা সংস্করণে তাঁর অনুমোদনপত্র তৎক্ষণাৎ পাঠিয়ে দেন। শুধু তাই নয়, তিনি তাঁর প্রালটি সম্পর্কিত দাবীও সম্পূর্ণ পরিত্যাগ করেন। তার ফলে এই বই বৃহস্তর পাঠক সমাজে আরো সহজ্প্রাপা হবে বলে আমরা আশা করি।

এই সুযোগে আমরা ডাক্তার এ্যান্ডু জন্স্-এর কাছেও আমাদের কৃতজ্ঞতা জানাই— কৃতজ্ঞতা অনুবাদকের পক্ষ থেকে, বাউলমন প্রকাশনের পক্ষ থেকে— আর হয়তো বৃহত্তর বাঙালী সমাজের পক্ষ থেকেও।

আমরা জানি আধুনিক সাম্রাজাবাদের জন্মদিন ১৪৯২ খ্রীষ্টাদের ১০ই অক্টোবর— অর্থাৎ কলাম্বাসের বাহামা দ্বীপে অবতরণের তারিখ। না, কলাম্বাস আমেরিকা আবিষ্কার করেন নি। তিনি করেছিলেন আক্রমণ। কলাম্বাস আবিষ্কার করেছিলেন: আদিবাসীদের সম্পদ আছে, কিন্তু মারণ-প্রযুক্তিতে ওরা হীন। লুঠনের চাইতে পাডজনক কিছু নেই। লুঠন বজায় রাখতে যলে মারণ প্রযুক্তিতে শ্রেষ্ঠই প্রয়োজন।

কলাশ্বাসের এই মহান আবিস্কার আত্তও বিশ্বের সূঠনকারীদের জীবনদর্শন।

ি কিলায়াসের বাহামা দ্বীপে অবতরণের সময় অর্থাৎ আধুনিক সাম্রাজ্যবাদের জন্মপ্রের আধুনিক বিজ্ঞান বিকাশ লাভ করতে শুরু করেছে মাত্র। তখনও প্রযুক্তিবিদ্যার সঙ্গে তাত্ত্বিক বিজ্ঞানের আত্মিক সম্পর্ক গড়ে ওঠেনি। কালের অপ্রগতির সঙ্গে সঙ্গে সে সম্পর্কও দৃঢ়তর হয়েছে। প্রযুক্তির প্রগতির মানদণ্ড একটিই: অপরকে বঞ্চনা করা এবং শোষণ করার ক্ষমতা। সূত্রাং প্রযুক্তির সঙ্গে তাত্ত্বিক বিজ্ঞানের আত্মিক বন্ধন বিজ্ঞানের পক্ষে শুভ হয় নি। শুভ হয় নি মানুষের পক্ষেও। সে জনাই আমাদের মতো তৃতীয় বিশ্বের মানুষ অর্থাৎ অর্থনৈতিকভাবে পরাধীন মানুষ কখনোই প্রযুক্তিবিদ্যা এবং তার পরম আত্মীয় তাত্ত্বিক বিজ্ঞানকে বন্ধ হিসাবে গ্রহণ করতে পারে নি। গ্রহণ করতে অক্ষমতার জন্য শুধুমান্ত্র অর্থনেতিকভাবে পরাধীন দেশের জনসাধারণই দায়ী নয়, সাম্রাজ্যবাদের জন্মলয় থেকেই শোষক দেশগুলি কপিরাইট আইন এবং পেটেন্ট আইনের মতো কতগুলি দুর্ভেদ্য বর্মে তাদের বক্ষনার নীতিকে সুরক্ষিত করেছিল। তাহাড়া ছিল ভাষার ব্যবধান। তাহাড়াও কি কারণ উল্লেখ করা যায় ? যেমন প্রথম বিশ্বের সচেতন অনীহা ? আমাদের সংগ্রাম জীবন সংগ্রাম, ওদের সংগ্রাম আমাদের শোষণ করার অধিকারের জন্য। সে সংগ্রামে মারণ প্রযুক্তিতে প্রেপ্তত্বের যেমন গুরুত্ব তেমনি গুরুত্ব শিকারকে যথাসপ্তর জন্ম রাধার।

অনেকে মনে করেন প্রযুক্তিবিদ্যা এবং বিজ্ঞানের কোনো জাতি নেই, কোনো বজু নেই, কোনো শক্র নেই। এরা বারাঙ্গনার মতো। যথোচিত মূল্য পেলে এরা যে কোনো প্রেমিককে সেবা করতে পারে। এই ভরসায় পৃথিবীর দুই তৃতীয়াংশ মানুষ কাঁযে খুড়োর কল লাগিয়ে চন্ডীনাসের খুড়োর মতো দৌড়েই চলেছে। কিন্তু সামনে ঝোলানো মিঠাইমণ্ডা খুব কম লোকের ভাগ্যেই জুটছে।

তবুও আমরা জানতে চাই। পরিবেশকে জানার চেষ্টা জীবের জন্মগত। কিম্ব বই, পত্রপত্রিকা, যন্ত্রপাতি ইত্যাদির মূল্য এমন যে পৃথিবীর দুই-তৃতীয়াংশ মানুষের আর্থিক ক্ষমতা থেকে তার অবস্থান অনেক দূরে। সে দূরত্ব দিনের পর দিন বেড়েই চলেছে।

প্রথম বিশ্বের নেতারা কি আমাদের অঞ্জতার বন্ধন দৃঢ়তর হওয়াতে খুশী ? আমি দ্বানি না।

তবে অধ্যাপক হকিং কিন্ত এরকম প্রচেষ্টার অনেক উর্বে। তিনি শুধু বাংসায় অনুবাদ প্রকাশের অনুমতি দিয়েই ক্ষান্ত হন নি, নিজের প্রাণ্য দক্ষিণার দাবীও তিনি ত্যাগ করেছেন।

অর্থাৎ অসুস্থ বিকলান অধ্যাসকের রয়েথে আকাশের মতো উদার একটি ছদয়।

সে হৃদয়কে আমি নমস্কান জানাই। সে হৃদয়ের কাছে আমি ঋণী, ঋণী বাউসমন প্রকাশন। ভবিষাতেও হয়তো ঋণী থাকবেন বাঙলা বিজ্ঞান সাহিত্যের পাঠকরা।

একটি দেশ কিয়া সমাজের বাক্তি এবং সমষ্টিতে পার্থক্য থাকে। বিশেষ করে পার্থকা থাকে সমষ্টির নেতা এবং ক্ষমতার অধিকারীদের সঙ্গে একক সাধারণ মানুষের। ক্ষমতার অধিকারীরা অধিকার অর্জন করার জন্য এবং অধিকার রক্ষা করার জন্য—উপায়ের কোনো ভালমন্দ বিচার করেন না। অধিকার অর্জন এবং রক্ষার সংগ্রাম নির্মম। কিন্তু সাধারণ মানুষের আকাজকা থাকে ক্ষুদ্রতর। তারা চায়—আহার, আশ্রয় আর সুস্থ পরিবেশ। তারা ভালবাসতে চায়, ভালবাসা চায়, চায় পরিবেশ সম্পর্কে জানতে। তারা ভাবতে চায়— "আমরা কারা? আমরা কোখায় ছিলাম—কোখায় এলাম আর যাবই বা কোখায়?"

আমাদের অধ্যাপক হকিং তেমনই একজন সাধারণ মানুষ। তাঁর জীবনে বিফলতা এসেছে নিজের স্বাস্থ্যে, সাফল্য এসেছে কর্মে, ভালবাসায়। তিনি ভালবাসতে পেরেছেন—ভালবাসা পেয়েছেন।

আমরা কামনা করি সেই সাধারণ মানুষ বেঁচে থাকুন। তাঁদের ভিতরে বেঁচে থাকুন অধ্যাপক হকিং—দূর হোক তাঁর অস্বাস্থ্য—শ্রীষৃদ্ধি পাক তাঁর কর্ম, তাঁর ভালবাসা—ভালবাসতে পারা—ভালবাসা পাওয়া। তবে আবার বলছি ডাঃ এয়ান্ডু জন্সের সহদয়তার কথাও আমরা ভূলব না।

আমি পদার্থবিদ নই। বিদ্যাবৃদ্ধি আমার সীমিত। পরিবেশ জানার জাস্তব প্রেরণায় আমি অনেক সময়ই হয়তো নিজের অধিকারের সীমা লভ্যন করি। আইনস্টাইন কিম্বা হকিং-এর বইয়ের বাংলা অনুবাদের চেষ্টা তার একটা উদাহরণ মাত্র। এ প্রচেষ্টায় ভুলক্রটি অনেক আছে—সে বিষয়ে আমার কোনো সন্দেহ নেই। যতবারই নতুন করে পড়ছি, ততবারই নতুন করে নজরে আসতে নতুন নতুন ক্রি। পাঠকরা যদি আমার এ ক্রেটি সংশোধন করে আমাকে সাহায্য করেন তা হলে এই প্রবীণ যুবক বাধিত বোধ করবে।

ইতি শক্ৰজিৎ দাশগুপ্ত

বাউলমন মুহালয়া ১৩৯৯

মহাবিশ্ব সম্পর্কে আমাদের চিত্র

(Our Picture of the Universe)

একজন সুপরিচিত বৈজ্ঞানিক (অনেকে বলেন, বার্ট্রাণ্ড রাসেল) একবার জ্যোতির্বিদ্যা সম্পর্কে জনসাধারণের কাছে বক্তৃতা দিয়েছিলেন। তিনি বলেছিলেন, পৃথিবী কি করে সূর্যকে প্রদক্ষিণ করে, আবার সূর্য কি করে আমাদের নীহারিকা (galaxy) অর্থাৎ বিরাট এক তারকা সংগ্রহের কেন্দ্রকে প্রদক্ষিণ করে যোরে। বক্তৃতার মেয়ে ঘরের পিছন থেকে ছোটখাটো এক বৃদ্ধা উঠে দাঁভিয়ে বললেন: "এতক্ষণ আপনি আমাদের যা বলেছেন— সব বাজে কথা। পৃথিবীটা আসলে চ্যাপ্টা, আর রয়েছে বিরাট এক কছেপের পিঠের উপর।" বৈজ্ঞানিক বিজ্ঞের হাসি হেসে বললেন, "কছেপটা কার উপর দাঁভিয়ে আছে?" বৃদ্ধা বললেন , "ছোকরা, তৃমি বেশ চালাক— খুব চালাক। তবে তলায় পরপর সবই কছেপ রয়েছে।"

মহাবিশ্ব অসংখ্য কচ্ছপের স্তম্ভ এ চিত্র অধিকাংশের কাছেই হাস্যকর মনে হবে।
কিন্তু আমরা বেশী জানি এ কথা ভাবব কেন ? মহাবিশ্ব সম্পর্কে আমরা কি জানি এবং
কিভাবে জানি ? মহাবিশ্ব এসেছে কোথেকে এবং যাজেই বা কোথায় ? মহাবিশ্বের কি কোনো
শুরু ছিল ? যদি থেকে থাকে তাহলে তার আগে কি হয়েছিল ? কালের চরিত্র কি ? কাল
কি কখনো শেষ হবে ? পদার্থবিদ্যার ইদানীং কালের আবিকারের সাহায্যে (সে আবিকারগুলি
অংশত হয়েছে কিছু অকল্পনীয় প্রযুক্তিবিদ্যার সাহায্যে) এই সমস্ত বহু দিনের বহু প্রাচীন
প্রশ্নগুলির কিছু কিছু উত্তরের আভাস পাওয়া যাজেহ। কোনো দিন হয়তো এই উত্তরগুলিকে
পৃথিনীর সূর্যকে প্রদক্ষিণ করার যতো স্বতঃপ্রতীয়মান মনে হবে। কিন্তা হয়তো মনে হবে
কচ্ছপের স্তম্ভের মতো হাসাকর। এ সম্পর্কে শুধুমাত্র কালই (সে বাই হোক) বলতে পারবে।

প্রাচীনকালে ৩৪০ ব্রীষ্ট-পূর্বান্দে গ্রীক দার্শনিক আরিষ্টোটল তাঁর অন দি হেডেন্স

(ON THE HEAVENS- মহাকাশ সম্পর্কে) বইতে পৃথিবী যে একটি বৃত্তাকার গোলক এবং একটা চ্যাপ্টা থালা নয়—এ সম্পর্কে দৃটি ভাল যুক্তি দেখাতে পেরেছিলেন। প্রথমত তিনি বুঝতে পেরেছিলেন, চন্দ্রগ্রহণের কারণ সূর্য এবং চন্দ্রের মাঝখানে পৃথিবীর আসা। চন্দ্রের উপর পৃথিবীর ছায়া সব সময়েই গোলাকৃতি। পৃথিবী গোলাকৃতি বলেই এটা সম্ভব। পৃথিবী যদি চ্যাপ্টা থালার মতো হোত তা হলে সূর্য ফখন থালার কেন্দ্রের ঠিক নিচে অবস্থান করছে— তখনই গ্রহণ না হলে ছায়াটি হোত লম্বাটে এবং উপবৃত্তাকার (elliptical)। দ্বিতীয়ত, গ্রীকরা তাঁদের ভ্রমণের ফলে জানতেন দক্ষিণ দিক থেকে দেখলে উত্তর দিক থেকে দেখার তুপনার প্রবতারাকে (North Star) আকাশের অনেক নিচুতে দেখা যায়। (যেহেতু প্রবতারা উত্তর মেরুর উপরে অবস্থিত, সেজন্য উত্তর মেরুর একজন পর্যবেক্ষকের মনে হয় তারাটি ঠিক তার মাধার উপরে। কিন্তু বিযুরবেখা থেকে দেখলে মনে হয় তারাটির অবস্থান দিক্চক্রবালে)। মিশর এবং গ্রীস থেকে ধ্রুবভারার আপাতদৃষ্ট অবস্থানের পার্থক্য পর্যালোচনা করে আরিষ্টোটল পৃথিবীর পরিধির একটা অনুমান করেছিলেন: চার লক্ষ স্ট্যাভিয়া (stadia)। স্ট্যাভিয়ামের (Stadium) দৈর্ঘ্য ঠিক কতটা সেটা জানা যায় না। তবে প্রায় ২০০ গল্প হয়তো ছিল। তা হলে ইদানীং কালের স্বীকৃত মাপের তুলনায় আরিষ্টোটজের অনুমান প্রায় বিত্তণ। পৃথিধী বৃদ্তাকার এ তথ্যের সপক্ষে শ্রীকদের আরো একটি যুক্তি ছিল। তা না হলে দিক্চক্রবাল থেকে জাহান্ত আসবার সময় প্রথম কেন পাল দেখা যাবে এবং তারপরে কেন দেখা যাবে জাহাজের কাঠামোটা ?

আরিটোল ভাবতেন পৃথিবীটা স্থির এবং সূর্য, হস্ত্র, এহ ও তারকারা পৃথিবীর চারদিকে বৃত্তাকার কক্ষে চলমান। তিনি এটা বিশ্বাস করতেন তার কারণ অতীন্ত্রিয়বদি (mystical) যুক্তিতে তিনি বিশ্বাস করতেন, পৃথিবী মহাবিশ্বের কেন্ত্র এবং বৃত্তাকার গতি সবচাইতে নিসুঁত। প্রীষ্টীয় শ্বিতীয় শতান্দীতে টোলেমী (Ptolemy) এই ধারণা বিস্তার করে ব্রহ্মাণ্ডের একটি সম্পূর্ণ প্রতিরূপ (cosmological model) তৈরী করেছিলেন। পৃথিবী ছিল কেন্ত্রে এবং তাকে যিরে ছিল আটটি গোলক। এই গোলকগুলি বহন করত চন্ত্র, সূর্য, তারকা এবং সেই যুগে জানিত পাঁচটি গ্রহ্ বুধ, শুক্ত, মন্থল, বৃহস্পতি এবং শনি (চিত্র ১.১)। গ্রহ্পুলি নিজেরা তাগের নিজ নিজ গোলকের সঙ্গে যুক্ত কুদ্রতর বৃত্তে ভ্রমণ করে। এই বিষরণ বাখা। করত তাদের আকাশে পর্যবেক্ষণ করা পথের জটিলতা। সবচাইতে বাইরের গোলকে থাকে তথাকথিত স্থির তারকাগুলি, এই তারকাগুলি পরস্পর সাপেক্ষ সব সময়ই একই অবস্থানে থাকে কিন্তু তারা একত্রে আকাশের এপার থেকে ওপারে ঘোরে। গেব গোলকের বাইরে কি থাকত সেটা কখনোই স্পন্ত ছিল না। তবে সেটা নিশ্বিত্ত ভাবেই মানুবের পর্যবেক্ষণযোগ্য মহাবিশ্বের অংশ ছিল না।

টোলেমীর (Ptolemy) প্রতিক্ষণ থেকে মহাকাশের বন্তণিগুগুলির আকাশে অবস্থান সম্পর্কে মোটামুটি নির্ভুল ভবিষাদ্বাদী করা সন্তব ছিল। সে জন্য টোলেমীফে একটা অনুমান করতে হয়েছিল: চন্দ্র এমন একটি পথ পরিপ্রমণ করে, যে পথে অনেক সময় অন্যান্য সময়ের তুলনায় পৃথিবীর সঙ্গে চাঁদের নৈকটা বিশুণ হয়। এর অর্থ চন্দ্রের আকার অনেক সময় অন্যান্য সময়ের তুলনায় বিশুণ দেখানো উচিত। এই ক্রণ্টি টোলেমী বুকতে পেরেছিলেন। কিন্তু তবুও এই প্রতিরূপটি সাধারণভাবে গৃহীত হয়েছিল। অবশ্য সবাই মেনে নেন নি। প্রিষ্ঠীয় চার্চ এই প্রতিরূপ গ্রহণ করেছিল। তার কারণ তাদের ধর্মশান্ত্রের সঙ্গে এই প্রতিরূপের মিল

চিত্র - ১.১

ছিল। এই প্রতিরূপের সূবিধা হল, স্থির তারকাগুলির গোলকের বাইরে স্বর্গ এবং নরকের জন্য অনেকখানি জায়গা পাওয়া যায়।

নিকোলাস কোণারনিকাস (Nicholas Copernicus) নামক একজন পোলিশ পুরোহিত ১৫১৪ সালে একটি সরলতর প্রতিরূপ উপস্থাপন করেন (প্রথমে হয়তো নিজেদের চার্চ ধর্মবিয়োধী বলবে এই ভয়ে কোপারনিকাস নিজের প্রতিরূপটি নিজের নাম না দিয়ে প্রচার করেন)। তার ধারণা ছিল সূর্য কেন্দ্রে হ্রিরভাবে অবস্থান করে এবং পৃথিষী আর অন্যান্য গ্রহ বৃত্তাকার পথে সূর্যকে প্রদক্ষিণ করে। এই চিন্তাধারাকে গুরুত্বের সঙ্গে গ্রহণ করতে প্রায় এক শতাব্দী লাগে। তারপর জার্মান জোহান কেপলার এবং ইতালীয়ান গ্যালিলিও গ্যালিলি এই দূজন জ্যোতির্বিদ প্রকাশ্য ভাবে কোপারনিকাসের তত্ত্ব সম্পূর্ণভাবে সমর্থন করতে শুরু ক্ষরেন। অথচ, এই তন্তু যে রক্ষম কক্ষের পূর্বাভাস দিয়েছিল ভার সঙ্গে পর্যবেক্ষণ করা কক্ষের সম্পূর্ণ মিল ছিল না। আরিষ্টোটসীয়-টোলেমীয় তত্ত্বের উপর মরণ আঘাত আসে ১৬০৯ ব্রীষ্টাব্দে। সে বছর গ্যালিলিও সদ্য আবিষ্কৃত দুরবীক্ষণ যন্ত্রের সাহায্যে রাত্রির আকাশ পর্যবেক্ষণ করা শুরু করেন। বৃহস্পতি গ্রহকে দেখবার সময় তিনি কয়েকটি ক্রন্ত ক্রন্ত উপগ্রহ অর্ঘাৎ চন্দ্র দেখতে পান। সেগুলি বৃহস্পতিকে প্রদক্ষিণ করছে। এর নিহিত অর্থ হল, অ্যারিষ্টোটল এবং টোগেমী যা ভাবতেন সেই মঙানুসারে যদিও সধারই পৃথিবীকে প্রদক্ষিণ করা উচিত, তবুও সব জিনিয়ই পৃথিবীকে প্রদক্ষিণ করে না (অবশ্য তখনও বিশ্বাস করা সম্ভব ছিল: পৃথিবী মহাবিশ্বের কেন্দ্রে ছির ভাবে অবস্থান করছে এবং বৃহস্পতির চন্দ্রগুলি অভ্যন্ত জটিল পথে পৃথিবীকে প্রদক্ষিণ করছে। পথটা এমন যে, মনে হয় তারা বৃহস্পতিকে প্রদক্ষিণ করছে। কিন্ত কোপারনিকাসের তত্ত্ব ছিল অনেক সরল)। একই সময় জোহান কেপগার কোশারনিকাসের তত্ত্বের পরিবর্তন করেন। তাঁর মতে গ্রহগুলি কুরাকারে চলমান নয়, চলমান উপবৃত্তাকারে (ellipse: উপবৃত্ত সম্বাটে একটা বৃত্ত)। শেষ পর্যন্ত পূর্বাভাস এবং পর্যবেক্ষণে থিল হল।

₹8

কেপলারের কাছে কিন্তু উপবৃত্তাকার কক্ষ ছিল একটি অহায়ী প্রকল মাত্র বরং এ প্রাকর ছিল প্রতিকৃষ। কারণ উপবৃত্ত স্পষ্টতই বৃত্তের চাইতে কম নিখুঁত। কেপলার আক্রিরিক ভাবে আবিষ্কার করেন: পর্যবেক্ষণের সঙ্গে উপবয় ভাল মেলে। তাঁর ধারণা ছিল, গ্রহণ্ডলিকে সূর্যের চারদিকে যুরতে বাধ্য করে চৌত্বক বল। এই থারণার সঙ্গে এই আকস্মিক আবিস্তারকে তিনি মেলাতে পারছিলেন না। এর ব্যাখ্যা পাওয়া যায় অনেক পরে ১৬৮৭ খ্রীষ্টাব্দে। স্যার আইজাক নিউটন তাঁর ফিলোজফিয়া ন্যাচারালিস প্রিলিপিয়া ম্যাথামেটিকা (Philosophiae Naturalis Principia Mathematica) গ্রন্থটি প্রকাশ করার পর। এটা বোধ হয়, ভৌত বিজ্ঞান বিষয়ে প্রকাশিত বইগুলির ভিতরে সবচাইতে গুরুত্বপূর্ণ। এ বইটাতে নিউটন শুধুমাত্র স্থান-কালে বস্তুপিণ্ডগুলি কি করে চলাচল করে সৈ সম্পর্কে তত্ত্বকথাই দেন নি, তিনি এই গতিগুলি বিশ্লেষণ করার দ্ধন্য যে জটিল গণিত প্রয়োজন সেটাও সৃষ্টি করেছিলেন। এ ছাড়া নিউটন একটি প্রকল্পিত সর্বব্যাপী মহাকবীয় বিধি উপত্থাপন করেন। এই বিধি অনুসারে মহাবিশ্বের প্রতিটি বস্তুপিশুই পরস্পরের প্রতি একটি বল দ্বারা আকৃষ্ট হয়, বস্তুপিশুগুলি পরস্পরের যত নিকটতর হবে, এই বল ততই শক্তিশালী হবে। তাছাড়া সে বলের শক্তি বন্ধি হবে বস্তুপিতের জর বৃদ্ধির সঙ্গে সঙ্গে। এই বলই বস্তুপিগুগুলির মাটিতে পড়ে যাওয়ার কারণ। (প্রচলিত কাহিনী হল : নিউটনের মাথায় একটা আপেল পড়াতে নিউটন অনুপ্রাণিত হয়েছিলেন : এ কাহিনী প্রায় নিশ্চিতভাবে অপ্রয়াণিত। নিউটন নিজে যা বলেছেন, তা হল, তিনি 'চিন্তা করার মেঞ্চাক্লে' বসেছিলেন, 'তখন' একটা আগেল গড়তে দেখে তাঁর মাধায় মহাকর্ষ সম্পর্কে ষারুণা এসেছে)। নিউটন আরো দেখিয়েছিলেন, তাঁর বিধি অনুসারে মহারুর্ব চন্দ্রতে উপবৃত্তাকার কক্ষে পৃথিবী প্রদক্ষিণ করায় এবং সূর্যের চাবপালে গ্রহগুলির উপবৃত্তাকার পথে ভ্রমণের কারণও এই মহাকর্ষ।

কোপারনিকাসের প্রতিরূপ টোগেমীর মহাকাশের নানা গোপক (celestical spheres) সম্পর্কে ধারণা দুরীভূত করে এবং তার সঙ্গে দুরীভূত হয় মহাকাশের একটি স্বাভাবিক সীমানা

রয়েছে দেই ধারণা। পৃথিধীর নিজ অক্ষে আবর্তনের দরুন ছির তারকাগুলির আকাশে আড়াআড়ি ঘূর্ণন (accross the sky) ছাড়া 'সেগুলির' অবস্থানের কোনো পরিবর্তন দেখা যায় না। এইজন্য স্বাভাবিকভাবেই অনুমান করা হয়েছিল যে ওগুলি আমাদের সূর্যের মতোই বস্ত, ত্তবে তাদের অবস্থান আরো দুরে।

নিউটন বুঝতে শেরেছিলেন তাঁর মহাক্ষীয় তত্ত্ব অনুসারে তারকাগুলির পরম্পরকে আকর্ষণ করা উচিত। সুতরাং মনে হয়েছিল তারা মূলত গতিহীন থাকতে পারে না। কোনো একটি বিন্দৃতে কি তাদের একসঙ্গে শতন হবে না? সে যুগের আর একজন চিন্তানায়ক রিচার্ড বেউলীকে (Richard Bentley) ১৬৯১ খ্রীষ্টাব্দে একটি পত্রে নিউটন যুক্তি দেখিয়েছিলেন, এ রকম হতে পারত শুধুমাত্র যদি তারকাগুলির সংখ্যা সীমিত হোত এবং ভারা যদি স্থানের একটি সীমিত অঞ্চলে বিভরিত (distributed) থাকত। কিন্তু তাঁর যুক্তি ছিল: অন্য দিক থেকে বলা যায়- যদি তারকার সংখ্যা অসীম হয়, তারা যদি সীমাহীন ছানে কমবেশী সমন্ত্রপে বিতরিত (distributed) থাকে, তা হলে এ রকম হবে না। কারণ, পতিত হওয়ার মতো কোনো কেন্দ্রবিন্দু থাকবে না।

অসীমত্ব নিয়ে বলতে গেলে কি রকম ভুল হতে পারে এই যুক্তি তার একটা দৃষ্টাস্ত। একটি অসীম মহাবিশ্বে প্রতিটি বিন্দুকেই একটি কেন্দ্র বলা যেতে পারে। তার কারণ প্রতিটি বিন্দুর্ই সর্বদিকে অসীম সংখ্যক তারকা থাকবে। অনেক পরে বোঝা গিয়েছিল নির্ভুল দৃষ্টিভঙ্গি হবে শুধু সীমিত পরিস্থিতির বিচার করা। সেই পরিস্থিতিতে তারকাগুলি পরস্পরের উপর পতিত হবে। তারপর প্রব্ন করা উচিত এই অঞ্চলের বাইরে যদি মোটামুটি সমন্ত্রপৈ বিতরিত আরো অনেক তারকাকে যোগ করা যায়, তা হলে কি পরিবর্তন হতে পারে। নিউটনের বিধি অনুসারে বাড়তি তারকান্তলি মূল তারকাগুলির ব্যাপারে গড়ে কোনো পার্থকা সৃষ্টি করবে না। সূতরাং তারকাগুলি একই দ্রুতিতে পতিত হবে। আমরা যত খুশী তারকা যোগ করতে পারি। তবুও তারা সর্বদা নিজেদের উপরে (but they will always collapse in on themselves) পতিত হয়ে চুপদে যাবে। এখন আমরা জানি মহাবিশ্বের এখন একটি ছির প্রতিরূপ অসম্ভব যে প্রতিরূপে মহাকর্য সব সময়ই আকর্ষণ করে।

বিংশ শতাব্দীর আগেকার চিন্তা জগতের আবহাওয়া সম্পর্কে একটি আকর্ষণীয় ব্যাশার্য হল কেউই মহাবিশ্ব বিস্তৃত হচ্ছে কিশ্বা সম্কৃতিত হচ্ছে এ রকম প্রস্তাব উত্থাপন করেন নি। সাধারণত মেনে নেওয়া হয়েছিল, হয় মহাবিশ্ব চিরকালই অপরিবর্তিত অবস্থায় বর্তমান ছিল, ন্যাল্যে কোনো এক সীমিত কালে আমরা মহাবিশ্বকৈ যে রূপে দেখছি, মোটামুটি সেরুপেই মহাবিশ্ব সৃষ্টি হয়েছিল। অংশতঃ এর কারণ, লোকে চিরন্তন সতা বিশ্বাস করতে চাইত, ভাছাড়া নিজেরা বৃদ্ধ হয়ে মবে গৈলেও মহাবিশ্ব চিরন্তন ও অপরিবর্তনশীল— এই চিন্তায তারা সান্ত্রনা পেতেন।

এমন কি যাঁরা বুখতে পেরেছিলেন যে নিউটনের মহাকর্ষীয় তত্ত্ব থেকে বো া যায় মহাবিশ্ব শ্বিতাবস্থায় থাকতে পারে না, তাঁরাও মহাবিশ্ব প্রসারমান এ রকম প্রস্তাবনা করেন নি। বরং তারা মহাক্ষীয় তত্ত্বের পরিবর্তন করতে চেয়েছিলেন। তারা বলতে চেয়েছিলেন, অত্যন্ত বেশী দূরতে মহাকর্ষ বিকর্ষণ করে। এর ফলে গ্রহগতি সম্পর্কে তাঁদের পূর্বাভাসে

বিশেষ কোনো পরিষর্তন হয় নি। বরং অসীমভাবে বিতরিত তারকাগুলির ভারসামোর অবস্থা অনুমোদন করেছেন পার কারণ, নিকটতর তারকাগুলির আফর্ষণবল এবং দ্রতর তারকাগুলির বিকর্ষণবল ভারসামা কারণ। কিন্তু এখন আমরা বিশ্বাস করি এ রকম ভারসামা হবে অস্থিব। কোনো এক আফরে তারকাগুলি যদি পরস্পারের সামানা নিকটতর হয় তা হলে তাদের অস্থবতী আকর্মী বলগুলি শক্তিশালী হবে এবং বিকর্ষণী বলের উপর প্রভূত্ব করবে। সূত্রাং তারকাগুলি পর পরের প্রতি পড়তেই থাকবে। আবার অন্যদিকে তারকাগুলি যদি সামান্য দ্রতর হয় তা হলে তারকাগুলি বদি সামান্য দ্রতর হয় তা হয়া বিকর্ষণবল প্রভূত্ব করবে এবং তারা পরস্পর থেকে দ্রতর হতেই থাকবে।

অসীম হির মহাবিশ্ব সম্পর্কে আর একটি আপন্তি সাধারণত আরোপ করা হয় জার্মান দার্শনিক হাইনরিথ ওপ্বারসের (Heinrich Olbers) উপরে। তিনি এই তত্ত্ব সম্পর্কে লিখেছিলেন ১৮২৩ সালে। আসলে নিউটনের সমসাময়িক অনেকেই এই সমস্যা উত্থাপন করোছিলেন। এমন কি ওল্বারসের প্রবন্ধটি এর বিক্তমে সম্ভাব্য যুক্তিপূর্ণ প্রথম প্রবন্ধ নয় কিছু এটাই প্রথমে বহুলোকের নজরে এসেছিল। মুশকিল হল, একটি অসীম হির মহাবিশ্বে দৃষ্টিয় প্রতিটি রেখাই একটি তারকার পৃষ্ঠে গিয়ে শেব হরে। সুতরাং আশা করা যাবে রাক্তিতেও সমস্ত আকাল সূর্বের মতো উজ্জ্বল হয়ে থাকরে। এর বিক্তমে ওল্বারসের যুক্তি ছিল দূরতর তারকা থেকে নির্গত আলোক অন্তর্বতী পদার্থের শোষণের ফলে ক্ষীণতর হবে। কিছু এরকম যদি ঘটে তা হলে শেষ পর্যন্ত অন্তর্বতী পদার্থও এমন উত্তপ্ত হবে যে সেগুলি তারকার মতো তাপোদ্দীপ্ত হয়ে উঠবে। সে ক্ষেত্রে রাতের আকালের সম্পূর্ণটাই সূর্যপৃষ্ঠের মতো উজ্জ্বল হবে। এই সিদ্ধান্ত এডাবার একমাত্র উপায় এই অনুমান করা যে তারকাগুলি চিরকালই ভাশ্বর নয়, ভার ভাশ্বরতা অতীতের কোনো সীমিত কালে শুরু হয়েছে। সেক্কেত্রে বিশোষণকারী পদার্থ হয়তো এখনো উত্তপ্ত হয়ে ওঠেনি, কিয়া হয়তো সুদ্বের তারকাগুলি থেকে আলোক এখনো আমাদের কাছে এসে পৌঁছায় নি। এর ফলে আর একটি প্রশ্ন আমাদের কাছে উপস্থিত হয়, সেটা হল তারাগুলি প্রথম স্বলল কি করে?

অবশ্য এর অনেক আগেই মহাবিশ্বের শুরু নিয়ে আলোচনা হয়েছে। কয়েকটি আদিম সৃষ্টিতত্ত্ব এবং ইংদী/ক্রীশ্চান/মুসলিম ঐতিহ্য অনুসারে মহাবিশ্বের শুরু একটি সীমিত অতীত কালে এবং সে কাল খুব সুদ্র অতীতে নয়। এই রকম একটা শুরুর সপক্ষে ছিল এই বােধ যে মহাবিশ্বের অক্তিত্বে জন্য একটি "প্রথম কারণ (first cause)" প্রয়োজন। (মহাবিশ্বের ভিতরে আপনি সব সময়ই একটি ঘটনার ব্যাখ্যা দ্বিসাবে অন্য একটি পূর্বতন ঘটনাকে কারণ হিসাবে উল্লেখ করেন। কিন্তু মহাবিশ্বের নিজের অক্তিত্ব ব্যাখ্যা করার একমাত্র উপায় হল তাম্বর একটা শুরু আছে এই অনুমান)। সেন্ট অগান্তিন তার বই দি সিটি অব পছ্ (The City of God—ঈশ্বরের নগর) - এ আর একটি যুক্তি উল্লেখ করেছেন। তিনি দেখালেন, সভ্যতার প্রগতি হল্ছে এবং কোন কাঞ্চ কে করেছিলেন এবং কোন প্রযুক্তি কার হারা বিকাশ লাভ করেছিল সেটা আমাদের মনে থাকে। সুতরাং মানুব এবং হয়তো মহাবিশ্বেরও অক্তিত্ব খুব বেলী দিনের নয়। সৃষ্টিতত্ত্ব সম্পর্কীয় পুস্তক (Book of Genesis) অনুসারে মহাবিশ্বের সৃষ্টি হয়েছে খ্রীষ্টপূর্ব পাঁচ হাজার বছর আগে। সেন্ট অগান্তিন (St. Augustine) এ তথ্য

মৈনে নিয়েছেন। (আকর্ষণীয় ব্যাপার হল এই তারিখ এবং দশ হাজার বছর আগেকার শেষ তুষার যুগের সমাপ্তি খুব বেশী দূরবর্তী নয়। প্রস্তুতত্ত্ববিদরা বলেন, সভ্যতার সত্যিকারের শুক্র সে সময় থেকেই।)

অন্যদিকে আরিটোটল এবং গ্রীক দার্শনিকদের অধিকাংশই সৃষ্টি সম্পর্কীয় ধারণা পছন্দ করতেন না। কারণ এই দৃষ্টিভঙ্গিতে ভাগবত হস্তক্ষেপ বড় বেশী রয়েছে। সেইজনা তারা বিশ্বাস করতেন, মানবজাতি এবং তার চারপাশের বিশ্ব চিরকাল ছিল এবং থাকবে। প্রাচীনরা প্রগতি সম্পর্কে পূর্বোক্লিখিত যুক্তিগুলি আগেই বিচার করেছেন। তাঁদের উত্তর ছিল মাঝে মাঝেই বন্যা কি ঐ রকম কোনো বিপর্যয় ঘটেছে এবং মানবজাতিকে বারবার পিছনে ঠেলে সভ্যভার একেবারে শুক্তে নিয়ে গিয়েছে।

কালে মহাবিশ্বের কোনো শুরু ছিল কিনা এবং মহাবিশ্ব হানে সীমিত কিনা এ বিষয়ে পরবর্তীকালে দার্শনিক ইমানুয়েল কান্ট ১৭৮১ সালে প্রকাশিত তাঁর মহান (এবং অতি দুর্বোধ্য) গ্রন্থ ক্রিটিক অব্ পিওর রিজন্-এ (Critique of Pure Reason) বিস্তারিতভাবে আলোচনা করেছেন। প্রশ্নগুলিকে তিনি বিশুদ্ধযুক্তির সঙ্গে অসঙ্গতিপূর্ণ (অর্থাৎ বিরোধাডাস) বলেছেন। তার কারণ মহাবিশ্বের একটা আরম্ভ রয়েছে এ তত্ত্ব বিশ্বাস করার সপক্ষে যেমন দৃঢ় যুক্তি রয়েছে তেমন দৃঢ় যুক্তি রয়েছে মহাবিশ্ব চিরকালই ছিল এই তত্ত্বের সপক্ষে। তত্ত্বের সপক্ষে তাঁর যুক্তি ছিল মহাবিশ্বের যদি কোনো আরম্ভ না খেকে থাকে, তা হলে যে কোনো ঘটনার পূর্বেই একটা অসীম কাল থাকা উচিত। তাঁর মতে এটা অসম্ভব। বিরোধী যুক্তির সপক্ষে যুক্তি;মহাবিশ্বের যদি শুরু থেকে থাকে, তাহলে তার পূর্বে একটা অসীম কাল ছিল। তাই যদি হয়, তাহলে একটি বিশেষ সময়ে মহাবিশ্বের আরম্ভ কেন হবে? তত্ত্বের সপক্ষে এবং তার বিরোধী তত্ত্বের সপক্ষে যুক্তিগুলি আসলে একই। দুটোরই ভিত্তি তার অব্যক্ত অনুমান : মহাবিশ্ব চিরকাল থাকুক কিন্তা ন্যু থাকুক কাল চিরস্তন ভাবে অতীতে রয়েছে। এরপর আমরা দেখব, মহাবিশ্বের আরভের আগে কাল সম্পকীয় কল্পন অর্থহীন। এটা প্রথম দেখিয়েছিলেন সেওঁ অগাষ্টিন। তাঁকে যখন জিজ্ঞাসা করা হয়েছিল, মহাবিশ্ব সৃষ্টির আগে ঈশ্বর কি করছিলেন, অগ্যাষ্ট্রীন তথন উত্তর দেন নি : এই ধরনের প্রশ্ন ধাঁরা করেন তিনি তাঁদের জন্য তৈরী করছিলেন নরক। তার বদলে তাঁর উত্তর ছিল মহাবিশ্বের কাল ঈশ্বরসৃষ্ট। মহাবিশ্বের আরম্ভের আর্গে कारमञ्ज অश्विषं हिम ना।

যখন অধিকাংশ লোকেরই বিশ্বাস ছিল মহাবিশ্ব মূলত হির এবং অপরিবর্তনশীল তখন মহাবিশ্বের আরম্ভ ছিল কি ছিল না— এ প্রস্থ আসলে ছিল অধিবিদ্যা (metaphysics) এবং ধর্মতত্ত্বের (theology)। যা পর্যবেক্ষণ করা হয় তার দুরকম ব্যাখ্যাই অতি সূষ্টুভাবে দেওয়া সম্ভব। অর্থাৎ মহাবিশ্বের অন্তিত্ব চিরকালই ছিল— এই তত্ত্বের ভিত্তিতে; কিয়া একটি সীমিতকালে মহাবিশ্বের আন্তর্জ চিরকালই ছিল— এই তত্ত্বের ভিত্তিতে। কিন্তু ১৯২৯ সালে এতুইন হাবল (Edwin Hubble) একটি ঘুগনির্দেশক (land mark) পর্যবেক্ষণ করেন। সেটা হল, যে দিকে দৃষ্টিক্ষেপ করবেন, সে দিকেই দেখা যাবে সুদূরের নীহারিকাগুলি আমাদের কাছ খেকে দ্বে সরে যাকে। অনা ভাষায় বলা চলে মহাবিশ্ব প্রসারমান। এর অর্থ হল অতীতবুগে বস্ত্তণিগুগুলি পরম্পরের নিকটতর

ছিল। আসলে মনে হয়েছিল দশ কিশ্বা কৃতি হাজাব মিলিয়ান (১০,০০,০০০) বছর আলো সবগুলি নীহারিকা একই জায়গায় ছিল সূতবাং সে সময় মহাবিশ্বের ঘনত্ব ছিল অসীম। এই আবিশ্বার শেষ পর্যন্ত মহাবিশ্বের আরভের প্রশ্নকে বিজ্ঞানের এলাকায় নিয়ে আসে।

হাবলের পর্যবেক্ষণ থেকে মনে হয় একটা কাল ছিল যার নাম দেওয়া হয়েছে বৃহৎ বিস্ফোরণ (big bang) ৷ তখন ছিল অসীমক্ষুদ্র মহাবিশ্ব (infinitesimally) এবং তার ঘনতুও ছিল অসীম। এই রকম অবস্থায় বিজ্ঞানের সব বিধিই তেতে পড়ে। সূতরাং তেতে পড়ে ভবিষাদ্বাণী করার ক্ষমতা। এর পূর্বকালে যদি কোনো ঘটনা ঘটে থাকে, তা হলে বর্তমান কালে যে ঘটনাগুলি ঘটেছে, সে ঘটনাগুলিকে তারা প্রভাবিত করতে পারে না। তাদের অস্তিত্ব অগ্রাহ্য করা যেতে পারে, কারণ পর্যবেক্ষণের উপর তার কোনো প্রভাব থাক্তব না। বলা যেতে পারে বৃহৎ বিক্ষোরণের সময় (big bang) কালের শুরু। অর্থাৎ পূর্বতন কালের কোনো সংজ্ঞা দেওয়া যাবে না। বেশ দৃঢ়ভাবে এ কথা বলা উচিত যে, কালের আরম্ভ সম্পর্কে আগে যা বলা হয়েছে, তার সঙ্গে এর অনেক পার্থক্য। পরিবর্তনহীন মহাবিদ্ধে আরম্ভ এমন একটা জিনিব যা মহাবিশ্ব বহির্ভৃত কোনো সত্তা আরোপ করেছে। এই আরম্ভের কোনো ভৌত প্রয়োজনীয়তা নেই। কল্পনা করা যেতে পারে আঞ্চরিক অর্থে অতীতের যে কোনো কালে ঈশ্বর মহাবিশ্ব সৃষ্টি করেছেন। অন্যাদিকে, মহাবিশ্ব যদি বিস্তারমান হয় তা হলে আরম্ভ কেন থাকবে তার একটা ভৌত কারণ থাকতে পারে। তবুও কল্পনা করা যেতে পারে বৃহৎ বিশেগরণের মুহুর্তে ঈশ্বর মহাবিশ্ব সৃষ্টি করেছেন। কিন্তা সৃষ্টি করেছেন বৃহৎ বিস্ফোরণের পরে। কিন্তু এমনভাবে সৃষ্টি করেছেন যেন মনে হয় একটা বৃহৎ বিস্ফোরণ হয়েছিল। তবে বৃহৎ বিশেয়ারণের আগে সৃষ্টি হয়েছিল এ রকম অনুমান করা হবে অর্থহীন। প্রসারমান মহাবিশ্ব প্রষ্টাকে অস্থীকার করে না। কিন্তু সম্ভবত কবে তিনি কাঞ্চটি করেছেন তার উপর একটা সময়সীমা আরোপ করে।

মহাবিশ্বের চরিত্র সম্পর্কে বলতে হলে এবং মহাবিশ্বের শুরু কিয়া শেষ আছে কিনা এই সমস্ত প্রশ্ন আলোচনা করতে হলে বৈজ্ঞানিক তত্ত্ব কাকে বলে সে সম্পর্কে আপনার একটা ম্পান্ট ধারণা থাকতে হবে। সাধারণ সরল মানুষ যা মনে করেন সেটা হল— তত্ত্ব মহাবিশ্বের একটা প্রতিরূপ (model), কিয়া প্রতিরূপ মহাবিশ্বের একটা সীমিত অংশের এবং আমরা যা পর্যবেক্ষণ করিছি, তার সঙ্গে প্রতিরূপের পরিমাণগুলিকে সম্পর্কযুক্ত করে এ রক্ম কতগুলি নিয়ম। আমি এই দৃষ্টিভঙ্গি মেনে নিক্ষি। এর অন্তিত্ব শুধুমাত্র আমাদের মনে। তার অনা কোনো বান্তবতা নেই (এর অর্থ ঘাই হোক না কেন)। একটা তত্ত্বকে ভাল তত্ত্ব বলা থেতে পারে যদি সে তত্ত্ব দৃটি প্রয়োজন সিদ্ধ করে: যে প্রতিরূপে কয়েকটি মাত্র যাদ্চিহ্বক (arbitrary) উপাদান রয়েছে তার ভিত্তিতে পর্যবেক্ষণফল সম্পর্কেও তাকে নিশ্চিত ভবিষারাণী অবশাই করতে হবে। উদাহরণ— আরিষ্টোটলের তত্ত্ব: সব জিনিষ্ট ক্ষিতি (carth), মরুৎ (air), অগ্নি (fire) এবং অপ্ (water)— এই কটি উপাদান দিয়ে গঠিত। এ তত্ত্বের সারল্য অনুমোদনের উপযুক্ত হিল। কিন্তু এ তত্ত্বের সারল্য অনুমোদনের উপযুক্ত হিল। কিন্তু এ তত্ত্বের সারল্য অনুমোদনের উপযুক্ত হিল। কিন্তু এ তত্ত্বের সিহলতে নিউটনের মহাক্রীয় তত্ত্বের ভিত্তি ছিল সরলতর। এ তত্ত্ব অনুসারে বন্তুপিগুন্তলি প্রম্পরক্র

ETTIOL COM একটি বল দ্বারা আকর্ষণ করে। সে বল তাদের ভর (mass) নামক একটি পরিমাণের আনুপাতিক (proportional) এবং তাদের পারস্পরিক দ্বত্তের বর্গের ব্যস্ত আনুপাতিক (inversely proportional)। কিন্ত তবুও এ তত্ত্ব চন্দ্র, সূর্য এবং প্রহণ্ডলির গতি সম্পর্কে অতি উচ্চমানের নির্ভুগতা সম্পন্ন ভবিষ্যদ্বাণী করে।

যে কোনো ভৌততত্ত্ব সব সময়ই সাময়িক (provisional)। এর অর্থ হল, এটা একটি প্রকল্প মাত্র। আপনি কখনোই একে প্রমাণ করতে পারেন না। একটি তত্ত্বকে পরীক্ষার ফল যতবারই সত্য প্রমাণিত করক না কেন পরের পরীক্ষার ফল যে তত্ত্বকে সত্য প্রমাণিত করবে, তত্ত্বের বিরুদ্ধে যাবে না— এ সম্পর্কে আপনি নিশ্চিত হতে পারেন না। অন্য দিকে, তত্ত্বের ভবিষাত্বাদীর বিরোধী একটি মাত্র পর্যক্ষেণও তত্ত্বকে অপ্রমাণ করতে পারে। বিজ্ঞানের দর্শনের দার্গনিক কার্ল পপার (Karl Popper) জারের সঙ্গেই বলেছেন, একটি ভাল তত্ত্বের বৈশিষ্ট্য হল যে, সে তত্ত্ব এমন কতগুলি ভবিষ্যত্বাদী করবে যে ভবিষ্যত্বাদীগুলি নীতিগতভাবে অপ্রমাণ কিল্লা মিথ্যা প্রমাণ করা সন্তব হবে। যতবারই নতুন পরীক্ষায় দেখা যায় পর্যবেক্ষণ মূলক ফলের সঙ্গে তত্ত্বের মতৈকা রয়েছে, তত্ত্ব ততবারই বেন্টে থাকে এবং তত্ত্বে আমাদের বিশ্বাসও বাড়ে। কিন্তু যদি কখনো কোনো নতুন পর্যবেক্ষণে দেখা যায়— এ মতৈকা নেই, তা হলে তত্ত্বটিকে হয় পরিত্যাগ করতে হবে নয়তো তার পরিবর্তন করতে হবে। অন্তত্ত পক্ষে এই রকমই হবে বলে অনুমান করা যায়। কিন্তু যিনি পর্যবেক্ষণ করছেন তার যোগাতা সম্পর্কে আপনি সব সময়ই প্রশ্ন করতে পারেন।

কার্যক্ষেত্রে যা ঘটে তা হল: যে নতুন তত্ত্ব উদ্ধাবন করা হয় সেটা আসলে পুরাতন তত্ত্বেই বিস্তৃতি। উদাহরণ: বুযগ্রহ নিয়ে অত্যন্ত নির্ভূল পর্যবেক্ষণের ফলে দেখা গোল নিউটনের মহাক্ষীয় তত্ত্বের ভবিষাদ্বাণীর সঙ্গে বুযগ্রহের গতির সামান্য পার্থক্য রয়েছে। আইনস্টাইনের ব্যাপক অপেক্ষর্বাদ গতি সম্পর্কে নিউটনের তত্ত্বের চাইতে সামান্য পৃথক একটি ভবিষাদ্বাণী করেছিল। আইনস্টাইন যে ভবিষাদ্বাণী করেছিলেন তার সঙ্গে পর্যবেক্ষণলব্ধ ফল মিলে গোল। কিন্তু নিউটনের তত্ত্বের সঙ্গে মিলল না। এটাই ছিল নতুন তত্ত্ব মেনে নেওয়ার একটা প্রামাণ্য কারণ। আমরা কিন্তু ব্যবহারিক উদ্দেশ্যে নিউটনের তত্ত্ব এখনো প্রয়োগ করি। তার কারণ, সাধারণত আমরা যে সব ক্ষেত্রে কান্ধ করি সে সমস্ত ক্ষেত্রে নিউটনীয় তত্ত্বের ভবিষাদ্বাণী এবং ব্যাপক অপেক্ষব্যাদের ভবিষাদ্বাণীর ভিতরে পার্থক্য সামান্যাই (নিউটনের তত্ত্বের আর একটি বিরাট সুবিধা হল আইনস্টাইনের তত্ত্ব নিয়ে কান্ধ করের চাইতে নিউটনের তত্ত্ব নিয়ে কান্ধ করা অনেক সহন্ত)।

বিজ্ঞানের চরম উদ্দেশ্য হল এমন একটি তত্ত্ব দান করা যে তত্ত্ব সম্পূর্ণ মহাবিশ্বকে ব্যাখ্যা করতে পারে। কিন্তু অধিকাংশ বৈজ্ঞানিকরা যে পথ গ্রহণ করেন সেটা হল সমসাকে দুটো ভাগে ভাগ করা। প্রথমত, কালের সঙ্গে মহাবিশ্বের কি রকম পরিবর্তন হয় সে সম্পর্কে একাধিক বিবি (law) রয়েছে (আমরা যদি জানি একটি বিশেষ কালে মহাবিশ্ব কি রকম দেখায়, তা ্সে পরবর্তী যে কোনো কালে মহাবিশ্ব কি রকম দেখায়ে সেটাও ঐ ভৌত বিধিপ্রতি আমানের বলে দেবে)। ন্বিতীয়ত, রয়েছে মহাবিশ্বের প্রারম্ভিক অবস্থার প্রশ্ন। অনেকে মনে করেন, বিজ্ঞানের শুধু প্রথম অংশটা নিয়েই চিন্তা করা উচিত। তাঁদের ধারণা, প্রারম্ভিক

অবস্থার প্রায়টা অধিবিদ্যা (metaphysics) কিন্তা ধর্মের (religion) বিষয়। তারা বলবৈন
দৈশ্বর সর্বশক্তিমান (omnipotent)। তিনি ইচ্ছে করলে যেভাবে খুশী মহাবিদ্ধ সৃষ্টি করতে
পারতেন। তা হতে পারে, কিন্তু সেক্ষেত্রে তিনি মহাবিদ্ধকে সম্পূর্ণ যাদৃদ্দিক (arbitrary)
শক্ষতিতেও বিকশিত করতে পারতেন। কিন্তু দেখা যাতেহ, মহাবিদ্ধকে তিনি বেশ নিয়মবদ্ধ
ক্রমে কঙ্গুলি বিশেষ বিধি (law) অনুসারে বিকশিত করেছিলেন। সূতরাং মনে হয় প্রারম্ভিক
ভারস্থার নিয়ামক বিধির অস্তিত্ব অনুমান করাও একট্ রক্তম যুক্তিসঙ্গত।

দেখা যায় একবারে মহাবিশ্বের বিবরণ দেওবার মতো একটা তত্ত্ব উদ্বাদন করা খুব শতা ভার বদলে আমনা সমস্যাটাকে টুকরো টুকরো করে ভেঙে নিই এবং কতগুলি আংশিক তত্ত্ব আবিজ্ঞাব করি। এই আংশিক তত্ত্বগুলির প্রতিটি, সীমিত প্রেণীর ক্ষেকটি পর্যক্ষেণ ফলেব বিবরণ দান করে এবং সে সম্পর্কে ভবিষাদ্বাদী করে। এ তত্ত্ব জন্য পরিমাণগুলির (quantities) ক্রিয়াকে জগ্রাহ্য করে কিন্তা ক্রেকটি সরল সংখ্যাগুচ্ছকে সেগুলির প্রতিনিধি হিসাবে স্থান কয়ে। হতে পারে এ পথ সম্পূর্ণ ভূল। মহাবিশ্বের প্রতিটি জিনিমই যদি প্রতিটি জিনিবের উপরে কুল্যতভাবে নির্ভরণীল হয়, তা হলে সমস্যার অংশগুলি সম্পর্কে বিচ্ছিন্ন ভাবে অনুসন্ধান করলে সম্পূর্ণ সমাধানের নিক্টবর্তী হওয়া হয়তো অসম্ভব হতে পারে। তবুও অতীতে আমানের যে প্রগতি হয়েছে, নিশ্চিতভাবে সেটা এই পদ্ধতিতে। এ বিষয়ে একটি শ্রেন্ন উদাহরণ হল নিউটনের মহাক্ষীয় বিধি। এ তত্ত্ব আমানের বলে, দুটি বন্তপিণ্ডের অন্তর্বতী মহাক্ষীয় বল প্রতিটি বন্ত্বপিণ্ডের সঙ্গে সংযুক্ত একটি সংখ্যার উপর নির্ভরশীল। সেটা হল তার ভর। কিন্তু বন্ত্রপিণ্ডগুলি কি উপানান বিয়ে গঠিত তার সঙ্গে এ বল সম্পর্কহীন। সূত্রাং তানের কক্ষ গণনার জন্য সূর্য এবং গ্রহগুলির গঠন এবং উপানান সম্পর্কে কোনো তান্তের প্রয়োজন হয় না।

আজকাল বৈজ্ঞানিকরা দুটি মূলগত আংশিক তত্ত্বের বাহিখিতে মহাবিশের বিষরণ দান করেন— ব্যাপক অপেক্ষবাদ এবং কোয়াটার মেকানিকর্ (কণাবাদী বলবিদ্যা)। এ দুটি তত্ত্ব এ শতাকীর প্রথমার্থের বিরাট বৌদ্ধিক কৃতিত্ব। ব্যাপক অপেক্ষবাদ মহাক্ষীয় বল এবং মহাবিশ্বের বৃহৎ থানের (large scale) গঠন সম্পর্কে বিষরণ দান করে, অর্থাৎ, যে গঠনের মাপ মাত্র ক্রেক মাইল থেকে শুক্ত করে মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান (১-এর পিঠে চবিশাটা শূনা) ঘাইল পর্যন্ত ।প্রেরেটা হল পর্যবেক্ষণযোগ্য মহাবিশ্বের মাপ। অন্যদিকে কণাবাদী কলবিদ্যার কালকার্ম অতি ক্ষুদ্র মানের পরিঘটনা (extremely small scale) নিয়ে। যথা, এক ইঞ্চিত্র এক মিলিয়ান করে বিলিয়ান ভাগ। দুর্ভাগ্যক্রমে আমরা জানি এই দুটি তত্ত্বের পারম্পরিক অসক্ষতি রয়েছে। দুটো ওত্ত্বই নির্তুল হতে পারে না। আধুনিক পদার্থবিদ্যার একটি প্রধান প্রকেটি রয়েরে এবটি প্রথম বক্ষরি রয়ান একটি তত্ত্ব অনুসন্ধান করা যার ভিতরে দুটো তত্ত্বই থাকবে— মহাকর্ম সম্বন্ধীয় কোয়ান্টার্ম তন্ত্ব। এ রকম তত্ত্ব এখনো আমানের নেই। হয়তো এরকম তত্ত্বে পৌছাতে আমানের বহু দেরী। কিন্তু এই তত্ত্বের কি কি গুণ থাকা আবিশ্যক হবে তার অনেকটাই আমরা এখন জানি। পরবর্তী অধ্যায়গুলিতে আম্রক্র বন্ধকর্যীয় কোয়ান্টার করা আবিশ্যক হবে তার অনেকটাই আমরা এখন জানি। পরবর্তী অধ্যায়গুলিতে আম্রক্র বন্ধকর্য আমানের জানা।

ি TTC তি আপনি যদি বিশ্বাস করেন, মহাবিশ্ব যাদৃষ্ঠিতে নয় এবং সুনিশ্চিত কতগুলি বিধি শ্বারা নিয়ন্ত্রিত, ভাহলে শেষ পর্যন্ত আংশিক তত্ত্বগুলিকে একন্ত্রিত করে একটি ঐক্যবদ্ধ সম্পূর্ণ তত্ত্ব গড়তে হবে এবং সে তত্ত্ব মহাবিশ্বের সবটারই বিবরণ দান করবে। কিন্ত ঐক্যবদ্ধ সম্পূর্ণ তত্ত্বের অনুসদ্ধানের ব্যাপারে একটা মূলগত স্ববিরোধিতা (paradox) রয়েছে। উপরে বৈজ্ঞানিক তত্ত্ব সম্পর্কে যে সমস্ত ভাবধারার স্পড়া দেওয়া হয়েছে, তাতে অনুমান করে নেওয়া হয়েছে আমারা যুক্তিবাদী জিব। আমাদের ইছামতো পর্যবক্ষণের স্বাধীনতা রয়েছে এবং যা পর্যবক্ষণ করিছি তা থেকে যৌক্তিক অবরোহী সিদ্ধান্ত (logical deduction) নেওয়ারও স্বাধীনতা আমাদের রয়েছে। এরকম একটা পরিকল্পনায় আমাদের মহাবিশ্ব পরিচালনা সম্পর্কীয় বিধিগুলি ক্রমল নিকটতর হওয়ার দিকে অবিচ্ছিন্ন অগ্রগতির সঞ্জাবনা রয়েছে, এ রকম অনুমান যুক্তিসক্ষত। কিন্তু সভাই যদি একটা ঐক্যবদ্ধ সম্পূর্ণ তত্ত্ব থাকে তা হলে সে তত্ত্ব আমাদের কার্যক্রমও নির্ধারণ করবে। সুতরাং, সে তত্ত্ব নিজেই আমাদের সেই তত্ত্ব অনুসন্ধানের ফলাফল নির্ধারণ করবে। সাক্ষ্য প্রমাণ থেকে যে আম্বরা সঠিক সিদ্ধান্তই নেব, এ তত্ত্ব কেন সেটা নির্ধারণ করবে থ একই ভাবে সে তত্ত্ব কি সাক্ষ্য থেকে আমাদের ভুল সিদ্ধান্তে পৌছাতে একই রকম ভাবে সাহায্য করতে পারে না ? কিন্তা কোনো সিদ্ধান্তেই না পৌছাতে থকই রকম ভাবে সাহায্য করতে পারে না ? কিন্তা কোনো সিদ্ধান্তেই না পৌছাতে থকই রকম ভাবে সাহায্য করতে পারে না ? কিন্তা কোনো সিদ্ধান্তেই না পৌছাতে ?

এই সমস্যার আমি একটাই সমাধান করতে পারি। সে সমাধানের ভিত্তি ভারউইনের স্বাভাবিক নির্বাচন সম্পর্কীয় নীতি (principle of natural selection)। চিন্তনটা হল: স্বতত বংশরক্ষণকারী যে কোনো জীবসোষ্ঠীর ভিতর বিভিন্ন ব্যক্তির জেনেটিক পদার্থ (genetic material) এবং লালন পালনে নানা পার্কক্ষ হবে। এই পার্থক্যের ভর্থ হবে কিছু ব্যক্তি অনা ব্যক্তিনের তুলনায় তাদের চতুপার্থের জগৎ সম্পর্কে সক্রিত্ত সিদ্ধান্ত নিতে এবং সেই অনুসারে কান্ধ করতে পার্বে অনেক ভাল ভাবে। এই সমস্ত ব্যক্তির বেঁচে থাকা এবং বংশবৃদ্ধি করার সন্তাবনা বেশী। সূত্রাং তাদের আচরণ এবং চিন্তার ধরন আধিপত্য করবে। আমরা যাকে বৃদ্ধি এবং বৈজ্ঞানিক আবিক্ষার বলি সেগুলি বেঁচে থাকার পক্ষে একটা সুবিধা বহন করছে এ তথ্য অতীত সম্পর্কে নিশ্চিত ভাবে সত্য। ব্যাপারটা এখনও একই রকম রয়েছে কিনা সেটা স্পন্ত নয়। আমাদের বৈজ্ঞানিক আবিক্ষারগুলি হয়তো আমাদের স্বাইকে ধ্বংস করতে পারে। তারা যদি ধ্বংস নাও করে তবুও একটি ঐক্যবদ্ধ সম্পূর্ণ তত্ত্ব আমাদের বাঁচার সন্তাবনার ব্যাপারে খুব একটা পার্থক্য সৃষ্টি না করতে পারে। কিন্ধ মহাবিশ্ব যদি নিয়মানুসারে বিবর্জিত হয়ে থাকে তা হলে আমরা আশা করতে পারি স্বাজ্যবিক্ক নির্বাচনের ফলে আমরা যে যৌজিক ক্ষমতা লাভ করেছি, সে ক্ষমতার অভিত্ব এবং কর্মক্ষমতা আমাদের ঐক্যবদ্ধ সম্পূর্ণ তত্ত্বের অনুসন্ধানের সময়ও থাকবে এবং আমদের ভূল সিদ্ধান্তের পথে নিয়ে যাবে না।

আমাদের যে আংশিক তত্ত্বপ্রতি রয়েছে, সেগুলি অতি চরম ক্ষেত্রপ্রতি ছাড়া অন্য প্রায় সব ক্ষেত্রেই নির্ভুল তবিষাঘাণী করার শক্ষে যথেষ্ট। সেইজনা যাবহারিক কারণে মহাবিশ্ব সম্পর্কে চরম তত্ত্বের অনুসন্ধানের যুক্তি খুঁজে পাওয়া মুশকিল (যদিও এ কবা গারণ করা উচিত যে অপেক্ষবাদ এবং কণাবাদী বলবিদ্যার বিরুদ্ধে একই রকম যুক্তি প্রয়োগ করা যেত। কিন্তু এই তত্ত্বলিই আমাদের পারমাণবিক শক্তি এবং মাইক্রো-ইলেকট্রনিক বিপ্লব দিয়েছে)। সুতরাং একটা ঐক্যবন্ধ সম্পূর্ণ তত্ত্ব আবিক্রার আমাদের প্রজাতিকে বাঁচতে সাহাব্য নাও করতে পারে। এমন কি, এ তত্ত্ব আমাদের জীবন যাত্রার ধরনের উপরেও কোনো প্রভাব বিস্তার শানি তি ।

না করতে পারে। কিন্তু সভ্যতার শুরু থেকেই মানুষ বিভিন্ন ঘটনাকে অসংযুক্ত এবং ব্যাখ্যার
অতীত তেবে সম্ভন্ত হয় নি। মানুষ আকাজ্জা করেছে পৃথিবীর অন্তনিহিত নিয়ম বুঝতে।
এখনো আমরা জানতে চাই কেন আমরা এখানে এসেছি এবং কোখেকে এখানে এসেছি?
জ্ঞানের জন্য মানুষের গভীরতম আকাজ্জা অবিচ্ছিন্ন অনুসদ্ধানের সপক্ষে যুক্তি হিসাবে যথেষ্ট।
এবং আমাদের সর্বনিম্ন আকাজ্জা হল, যে মহাবিশ্বে আমরা বাস করি তার সম্পূর্ণ বিষরণ।

স্থান এবং কাল

(Space and Time)

বস্তুশিশুগুলির গতি সম্পর্কে আমাদের আধুনিক ধারণার সূত্রপাত গ্যালিলিও এবং নিউটন থেকে। তার আগে লোকে বিশ্বাস করত আরিটোটনকে। তিনি বলেছিলেন, বস্তুপিশুর স্থাভাবিক অবস্থা স্থিতি এবং সে গতিশীল হয় শুধুমাত্র কোনো বল বা ঘাতের (impulse) দ্বারা। এ মতের ফলপ্রতি হল একটি হান্ধা বস্তুপিশুরে তুলনায় একটি ভারি বস্তুপিশুর পতন ফ্রন্ডের হবে। তার কারণ পৃথিবীর প্রতি ভার আকর্ষণ বেশী।

এ ছাড়াও আরিষ্টোটলের ঐতিহ্য বলে, বিশুদ্ধ চিন্তার সাহাযোই মহাবিদ্ধ নিয়ন্ত্রণকারী সমস্ত বিধি (law) গঠন করা সন্তব। পর্যকেশণের সাহাযো ব্যাপারটা মিলিয়ে দেখার কোনো প্রয়োজন নেই। সূতরাং, গ্যালিলিওর পূর্ব পর্যস্ত থিডির ওজনের বস্তপিশুগুলির গতিবেগ বিভিন্ন কিনা— সেটা দেখার জনা কেউ বাস্ত হয় নি। কবিত আছে পিসার হেলানো স্তম্ভ থেকে একাধিক ওজন ফেলে গ্যালিলিও প্রমাণ করেছিলেন আরিষ্টোটলের ধারণা ভূল। কাহিনীটা যে অসত্য সেটা প্রায় নিশ্চিত। কিন্তু গ্যালিলিও এই ধরনের একটা কিছু করেছিলেন। তিনি একটি তালু মসৃণ পথে বিভিন্ন ওজনের বল গড়িয়ে দিয়েছিলেন। পরিস্থিতিটা ভারি বস্তপিতের উল্লেখনের (vertically) পতনের মতো। কিন্তু ব্যাপারটা পর্যবেকণ করা সহজ্ঞতর, তার কারণ গতিবেগ তুলনায় কম। গ্যালিলিওর মাপনে দেখা গেল ওজন যাই হোক না কেন প্রতিটি বন্ধপিতেরই ফুন্ডি (speed) এক রকম। উদাছ্রেণ, একটি বলের ওজন যাই হোক না কেন সেটাকে যদি এখন একটি তালু পথে ছেড়ে দেওয়া হয়, যার ঢাল প্রতি দল মিটারে এক মিটার তা ছলে এক সেকেণ্ডের পর ফ্রন্ডি হবে প্রতি সেকেণ্ডের পর চনতে বাকবে।

স্থান এবং কাল

অবশা একটি সীসক নির্মিত ওজন একটি পালকের চাইতে দ্রুত যাবে। কিন্ত তার একমাত্র কারণ পালকটা বাতাসের বাধা পেয়ে মন্দর্গতি হয়। কিন্ত যদি এমন দৃটি বস্তুপিও নিক্ষেপ করা যায়, যেগুলিকে বাতাস কোনো বাধা দেবে না— যথা ভিন্ন ওজনের দৃটি সীসক— তা হলে ভাদের পতনের হার হবে একই।

গ্যালিলিওর মাপনগুলিকে নিউটন ওাঁর গতির বিধির ভিত্তি করেছিলেন (laws of motion) i গ্যালিলিওর পরীক্ষাগুলিতে একটি বস্তুপিও যখন ঢালু পথে গড়ায়, তখন তার উপরে একই বল (সেটার ওজন) ক্রিয়া করে এবং তার ক্রিয়া হল বস্তুপিগুটির অবিচ্ছিত্র দ্রুতি বৃদ্ধি করা। এ থেকে দেখা গেল একটি বলের বাস্তব ক্রিয়া সব সময়ই অবিচ্ছিন্নভাবে একটি বস্তুপিতের ফ্রান্টির পরিবর্তন করা। বস্তুপিশুটির গতি শুধু শুরু করাই তার কাজ নয়, যদিও জাগৈ লোকে তাই তেবেছে : তা ছাড়া এর কর্ম ছিল একটি বস্তুপিণ্ডের উপরে যখন একটি বল ক্রিয়া করে বন্তপিশুটি তখন শ্বজ্বরেখায় একই দ্রুতিতে চলতে থাকবে। এই ধারণা প্রথম স্পষ্টভাবে বলা হয় ১৬৮৭ সালে প্রকাশিত নিউটনের প্রিন্সিপিয়া ম্যাথামেটিকাতে (Principia Mathematica)। এটা নিউটনের প্রথম বিধি (law) নামে পরিচিত। একটি বস্তপিত্তের উপরে যখন একটি বল ক্রিয়া করে তখন কি হয় সেটা পাওয়া যায় নিউটনের দ্বিতীয় বিধিতে। এই বিধি বলে একটি বস্তুলিশ্রের ত্বরণ কিন্তা তার দ্রুতির হার বলটির সঙ্গে সমানুপাতিক (উনাহরণ : বন যদি থিগুণ হয়, তা হলে ত্বনও ছিগুণ হবে)। বস্তুপিশুটির ডর (mass-পদার্থের পরিমাণ) ফড বেশী হতে ত্রণও তত কম হতে। (একই বল যদি থ্রিপ্তণ ভরের বস্তুপিতের উপর ক্রিয়া ক্রের তা হলে সে বল অর্থেক ত্বরুদ উৎপাদন করবে)। একটি পরিচিত উদাহরুদ হল, আধুনিক মোটর গাড়ি। ইঞ্জিন যত শক্তিশালী হবে, ত্বরণও তত বেলী হবে, কিন্তু গাড়িটার ওজন যদি তুলনায় বেলী হয়, তা হলে ইঞ্জিনটা এক থাকলেও তুরণ কম হবে।

গতির বিধি ছাড়াও নিউটন আর একটি বিধি আবিজ্ঞার করেছিলেন। সে বিধি মহাক্ষীয় বলের বিবরণ দান করে। এই বিধির বক্তবা হল, প্রতিটি বস্তুপিশুই প্রতিটি অনা বস্তুপিশুকে আরুর্যপ করে। এই আকর্ষণ বল প্রতিটি বস্তুপিশুক জরের সমানুগাতিক। সূত্রাং যদি বস্তুপিশুগুলির একটির (ধরা যাক, বস্তুপিশু ক) তর বিশুণিত করা যায়, তা হলে তাদের অন্তর্যকী বলও স্থিপ্রণ শক্তিশালী হবে। এটাই আশা করা উচিত, কারণ, নতুন বস্তুপিশুকে ভাষা যেতে পারে আগেকার তর সম্পন্ন দুটি বস্তুপিশু। প্রতিটি বস্তুপিশু শ বস্তুপিশুকে আরুর্যণ করিবে আগেকার (original) বলে। সূত্রাং ক এবং শ-এর অন্তর্যকী মোট বল হবে প্রথম বলের ন্থিপ্রণ। বিশ্ব ধক্তন একটি বস্তুপিশুর ভর যদি ভিন্তণ হয় এবং আর একটি বস্তুপিশুর ভর যদি তিন গুণ হয়, তা হলে বল হবে হয় গুণ শক্তিশালী। এখন ব্যোঝা যায় কেন সমস্ত বস্তুপিশুগুলির পতনের হার এক। একটি বস্তুপিশুর গঙ্কন হিন্তণ হবে। নিউটনের হিতীয় বিধি (law) অনুসারে এই দুটি ব্রিন্যা পরস্পরকে নির্ভুল ভাবে বাতিল করবে। সূত্রাং সর্বক্ষেত্রে হুরণ এক থাকবে।

নিউটনের মহাক্ষীয় বিধি আরো বলে যে, বরণিওগুলির দূরত্ব যত বেশী হবে কলও ওত কম হবে। নিউটনের মহাক্ষীয় বিধি অনুসারে একটি তারকার মহাক্ষীয় আকর্ষণ, অর্থেক দূরত্বৈ অবস্থিত একই রকম আর একটি তারকার আকর্যণের তুলনার এক চতুর্থাংশ হবে।
এই বিধি পৃথিবী, চন্দ্র এবং বিভিন্ন প্রহের কক্ষ (orbit) সম্পর্কে অভান্ত নির্ভুল ভবিষারাণী
করে। বিধি যদি এমন হোত যে একটি তারকার দূরত্বের সঙ্গে আকর্ষণ আরো দ্রুত হ্রাস
পায় তা হলে প্রহণ্ডলির কক্ষ (orbit) উপস্থাকার (elliptical) না হয়ে সেগুলির শথ
হোত সর্পিল এবং তারা সূর্বে শভিত হোত। এগুলির হ্রাসপ্রাপ্তি যদি মন্দর্ভর ভোত, ভা
হলে সুদূরে অবস্থিত তারকাগুলির মহাক্ষীয় যল পৃথিবীর মহাক্ষীয় বলের উপর আধিশত্য
করত।

আরিষ্টোটলের ধারণা এবং নিউটন গ্যাফিলিওর ধারণার ভিতরে বড় শার্থক্য হল, আরিষ্টোটলের মতে বন্তপিশুগুলির হিতাবছাই শছন্দ। তাঁর মতে যে কোনো বন্তপিশুই ছিতাবছায় থাকরে অবশা যদি কোনো বল কিয়া ঘাত ভার উপর ক্রিন্যা না করে। বিশেষ করে তিনি ভারতেন পৃথিবীটা হিতিশীল। কিন্তু নিউটনের বিধির ফলপ্রুতি হল, ছিতির কোনো ওননা (unique) মান নেই। বলা যেতে পারে বন্তপিও ক হিতিশীল এবং বন্তপিও ল বন্তপিও ক চলজন। ক্রিয় কার্তিত চলমান। কিয়া বলা যেতে পারে বন্তপিও ও হিতিশীল এবং বন্তপিও ক চলজন। দৃটি বিবৃতিই সমভাবে প্রযোজন। উলাহরণ, যদি মুধুর্রের জন্য- পৃথিবীর আন্তর্তন এবং সূর্যকে খিরে তার বন্ধ (orbit) না বিচার করা যায়, তা হলে কনা যেতে পারে পৃথিবী হিতিশীল এবং একটি রেলগাড়ী তার উপরে ঘন্টায় নববুই ঘাইল বেশে উত্তরমূখী তলেছে কিয়া বলা যেতে পারে ট্রেন্টা ছিতিশীল এবং পৃথিবী ঘন্টায় নববুই মাইল বেশে মন্তিন্য করেন, তা হলে দেখবেন নিউটনের বিধিগুলি সে ক্ষেত্রেও সভা। উনাহরণ: রেলগাড়ীতে যদি কেউ পিং পং খেলেন, ভাহলে দেখবেন বলটি নিউটনীয় বিধি যেনে চলছে। রেল লাইনের পালে অবছিত একটি টেবিলের উপর যে রকম হয় ঠিল সেই রকম। সূত্রাং, রেলগাড়ীটি চলমান না পৃথিবী চলমান সেটা বলার কোনো উপায় নেই।

ছিতির পরম মানের (absolute standard) অভাবের অর্থ: দৃটি ঘটনা যদি বিভিন্ন কালে ঘটে থাকে ভাহলে সে দৃটি ঘটনার ছানিক অবস্থান অভিন্ন কিনা সেটা নির্ধারণ করা যায় না। উদাহরণ: ধরুন আমানের টোনের ভিতরকার পিং পং থলটা উপর নিচে লায়িয়ে এক সেকেও পর পর টেবিলের একই বিন্দুতে দুবার ঠোকুর খেল। বেলরান্তার উপর যদি কেউ থাকেন তবে তার মনে হ্যে বলের দৃটো ঠোকুর হয়েছে চল্লিগ নিটার বাবধানে। তার কারণ, দুটি ঠোকুরের মধাবতী সময়ে টেনটা অতটা দূরত্ব অভিক্রেম করত। সুভরাং পরম ছিতির অমন্তিত্বের অর্থ ছিল একটি ঘটনাগ স্থানে পরম অবস্থান কারো পক্ষে বলা সম্ভব ছিল না। আরিজ্যেল কিছা ভেবেছিলেন এটা সম্ভব। টেনের একজন লোক সাপেক এবং কেম্বরান্ডার উপরের একজন লোক সাপেক ঘটনাগুলির অবস্থান এবং তার দূরত্ব ভিন্ন ভিন্ন ব্যবহান এবং এক জনের অবস্থানের খমলে অন্য জনের অবস্থান এবং করার কোনো কারণ থাকের না।

শরম প্রবন্ধন কিছা যাকে করা হয় পরম ছান— তার এই অনন্তিত্বের ছন্য নিউটন খুব উৎকঠিত হয়েছিলেন। তার কারণ তাঁর শরম স্বির সম্পর্কীয় ধারণার সভে ও ভাগের মিল ছিল না। এমন কি তিনি পরম স্থানের অনস্তিত্ব মেনে নিতে অস্বীকার করেছিলেন, অথচ তাঁর বিধিগুলির ভিতরে এ তথা নিহিত ছিল। এই অন্টোক্তিক বিশ্বাসের জন্য অনেকেই তাঁর অতান্ত বিরূপ সমালোচনা করেছিলেন। তাঁদের ভিতরে উল্লেখযোগ্য ছিলেন বিশপ বার্কলে (Bishop Berkeley) নামক একজন দার্শনিক। বার্কলের বিশ্বাস ছিল সমস্ত বাস্তব পদার্থ এবং স্থান ও কাল ভ্রমান্থক (illusion)। বার্কলের মতামত যখন বিখ্যাত ডঃ জনসনকে বলা হয়, তখন তিনি পায়ের অগ্রভাগ দিয়ে একটা বড় পাথরে আঘাত করে বলেছিলেন, "এই মতকে আমি এইভাবেই খণ্ডন করি।"

আরিষ্টোটন এবং নিউটন দুজনেই পরম কালে (absolute time) বিশ্বাস করতেন।
অর্থাৎ তাঁদের বিশ্বাস ছিল, দৃটি ঘটনার অন্তর্বতী কাল নিশ্চিতভাবে মাপা সম্ভব; মাপনক্রিয়া
যেই করুন না কেন কাল একই থাকবে। অবশ্য যদি তাঁরা একটা ভাল ঘড়ি বাবহার করেন।
কাল ছিল স্থান থেকে সম্পূর্ণ পৃথক ও স্থাননিরপেক্ষ এবং অধিকাংশ লোকই ভাবেন এই
দৃষ্টিভঙ্গি সাধারণবৃদ্ধিসম্মত। কিন্তু আমাদের স্থান এবং কাল সম্পর্কিত ধারণা বদলাতে হয়েছে।
আপেল কিন্তা যে সমস্ত গ্রন্থ তুলনায় ধীরগামী সেগুলির ক্ষেত্রে আমাদের আপাতদৃষ্ট সাধারণ
বৃদ্ধিজাত ধারণায় কাজ হয়। কিন্তু আলোকের ফ্রণ্ডি কিন্তা তার কাছাকাছি ফ্রন্ডির ক্ষেত্রে
এ সমস্ত ধারণায় কোনো কাজই হয় না।

আলোক সীমিত কিন্তু অত্যন্ত দ্রুত গতিতে চলাচল করে। ১৬৭৬ খ্রীষ্টাব্দে এই তথা আবিষ্কার করেছিলেন ডেনমার্কের জ্যোতির্বিজ্ঞানী ওলে ক্রিষ্টেন্সেন রোমার (Ole Christensen Roemer)। তিনি পর্যবেক্ষণ করেছিলেন, বৃহস্পতির চাঁদগুলি যখন তার পিছনে যাছে বলে মনে হয় তাদের তখনকার অন্তর্বতী সময়গুলি সঠিক সমান নয়। অর্থাৎ চাঁদগুলির যদি বৃহস্পতিকে প্রদক্ষিণ করার গতির হার ছির হোড তা হলে যা হওয়া উচিত ছিল তা নয়। পৃথিবী এবং বৃহস্পতি সূর্য প্রদক্ষিণের সময় গ্রহ দূটির পারস্পরিক দূরত্বের পরিবর্তন হয়। রোমার লক্ষ্য করেছিলেন, বৃহস্পতি যত দূরে থাকে, তার চাঁদগুলির গ্রহণও তত দেরীতে দেখা যায়। তাঁর যুক্তি ছিল, এর কারণ— আমরা যখন দূরে অবস্থান করি তখন বৃহস্পতির চাঁদগুলি থেকে আলোক আমাদের কাছে পৌঁছাতে বেলী সময় লাগে। পৃথিবী থেকে বৃহস্পতির দূরত্বের হ্রাস বৃদ্ধি সম্পর্কে তাঁর মাপন কিন্ত খুব বেলী নির্ভুক্ত হয়নি। তাঁর হিসাবে আলোকের দ্রুতি ছিল সেকেণ্ডে এক লক্ষ্য চল্লিশ হাজার মাইল। এর সঙ্গে আখুনিক মান—সেকেণ্ডে এক লক্ষ্য ছিয়াশি হাজার মাইলের তুলনা করা যায়। তবুও শুধুমাত্র আলোক সীমিত দ্রুতিতে চলাচল করে এই তথ্য প্রমাণ করাণ্ডেই নয়, সেই দ্রুতি মাপনেও রোমারের কৃতিত্ব খুবই উল্লেখযোগ্য। কারণ, নিউটনের প্রিকিপিয়া ম্যাধামেটিকা প্রকাশের এগানো বছর আগে তিনি এ আবিষ্কার করেছিলেন।

আলোক বিস্তার সম্পর্কে সঠিক তত্ত্ব ১৮৬৫ সালের পূর্বে আবিষ্কৃত হয় নি। সেই
সময় ব্রিটিশ পদার্থবিদ জেম্স্ ক্লার্ক ম্যাঙ্গেওয়েল (James Clerk Maxwell) বিদ্যুৎ এবং
চূম্বক সম্পর্কীয় সেই কাল পর্যন্ত প্রচলিত আংশিক তত্ত্বগুলিকে ঐক্যবদ্ধ করতে সমর্থ হন।
ম্যাঙ্গওয়েলের (Maxwell) সমীকরণগুলি ভবিষাদ্বাণী করেছিল, সন্মিলিত চূম্বক বিদ্যুতীয়
ক্ষেত্রে তরঙ্গের মতো একটি চাঞ্চলা হওয়া সম্ভব এবং সরোবরের তরঙ্গের মতো সেগুলি

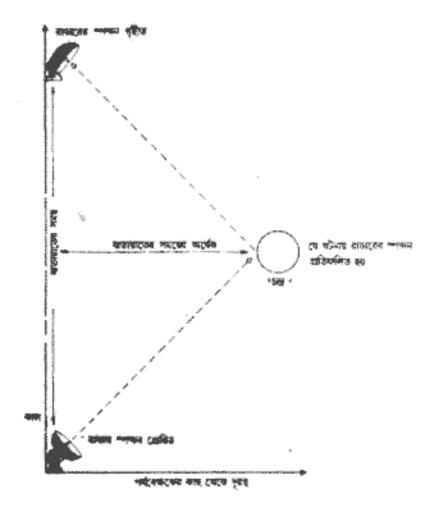
ছির দ্রুন্তিতৈ চলমান হবে। এই তরঙ্গুলির তরঙ্গুলির তরঙ্গুলির (একটি তরঙ্গুলির থেকে পরবর্তী তরঙ্গুলীর্বের দূরত্ব) যদি এক মিটার কিন্তা তার চাইতে বেলী হয় তাহলে আমরা এখন যাকে বেতার তরঙ্গ বলি তার সঙ্গে সেগুলি অভিন্ন। ক্ষুদ্রতর তরঙ্গ দৈর্যাগুলির নাম মাইক্রোওয়েত (কয়েক সেটিমিটার) কিন্তা অবলোহিত (infrared, এক সেটিমিটারের দশ হাজার ভাগের এক ভাগের চাইতে বেলী)। দৃশ্যমান আলোকের তরঙ্গদৈর্ঘা এক সেটিমিটারের চল্লিল মিলিয়ান ভাগ থেকে ৮০ মিলিয়ান ভাগের মাঝামাঝি। এর চাইতে ক্ষুদ্রতর তরঙ্গদৈর্ঘাগুলির নাম অতিবেগুনী (ultraviolet), রঞ্জন রশ্মি (X-rays) এবং গামা রশ্মি (gamma-rays)।

ম্যাক্ষওয়েলের তত্ত্ব ভবিষাধাণী করেছিল, রেডিও কিল্লা আলোক তরঙ্গুলি একটি বিশেষ ছির দ্রুতিতে চলমান হবে। কিন্তু নিউটনীয় তত্ত্ব পরম স্থিতির ধারণা থেকে মুক্ত হয়েছিল। তা হলে যদি অনুমান করা যায়, আলোক একটি শ্বির দ্রুতিতে চলাচল করে তাহলে বলতে হবে সেই স্থিরত্বের মাপন কি সাপেক্ষ হবে: সুতরাং অনুমান করা হল 'ইথার' বলে একটি পদার্থ আছে, সেই পদার্থ সর্বত্র বিরাজমান- এমন কি, বিরাজমান 'শূনা' স্থানেও। শব্দ তরঙ্গ যে রকম বায়ুর ভিতর দিয়ে চলাচল করে, আলোক তরঙ্গেরও দেই রকম ইথারের ভিতর দিয়ে চলাচল করা উচিত। সূতরাং তাদের দ্রুতি হওয়া উচিত ইথার সাপেক্ষ। ইথার সাপেক্ষ চলমান বিভিন্ন পর্যবেক্ষকের মনে হবে আলোক তাদের কাছে ভিন্ন ভিন্ন গতিতে আসছে। কিন্তু ইথার সাপেক্ষ আলোকের দ্রুতি স্থির থাকবে। বিশেষ করে, পৃথিবী যখন ইথারের ভিতর দিয়ে সূর্য প্রদক্ষিণ করার পথে, তখন ইথারের ভিতর দিয়ে পৃথিবীর গতির অভিমুখে আলোকের দ্রুতি মাপলে (যখন আমরা আলোকের উৎস অভিমূখে চলেছি) সোটা গতির সমকোণে আলোকের ক্রতির (speed) চাইতে উচ্চতর হবে (যখন আমরা উৎসের অভিমুখে যাচ্ছি না)। ১৮৮৭ সালে অ্যান্সবার্ট মিচেন্সসন (Albert Michelson) (পরবর্তী কালে তিনিই প্রথম আমেরিকান যিনি পদার্থবিদ্যায় নোবেল প্রাইজ পেরেছিলেন) এবং এডওয়ার্ড মর্লি (Edward Morley) ক্লীভল্যাণ্ডের ফলিভ বিজ্ঞানের কেস স্কুলে (Case School of Applied Science) অতি যত্ত্বে একটি পরীক্ষা করেন। তাঁরা পৃথিবীর গতির অভিমূবে আলোকের দ্রুতির সঙ্গে পৃথিবীর গতির অভিমূখের সমকোণে আলোকের ক্রতি তুলনা করেন। তাঁরা বিশ্ময়ের সঙ্গে দেখলেন, দুটি দ্রুতিই নির্ভুলভাবে অভিন।

১৮৮৭ সাল থেকে ১৯০৫ সাল পর্যন্ত মিচেলসন-মর্লি পরীক্ষা ব্যাখ্যা করার চেষ্টা করা হয়। বন্তপিশুগুলি ইথারের ভিতর দিয়ে চলমান অবস্থায় সন্কৃচিত হয় এবং থড়ি ধীরতর (slower) হয়— এই ভিত্তিতে মিচেলসন-মর্লি পরীক্ষার ব্যাখ্যা করার অনেকগুলি চেষ্টা হয়। বাঁরা চেষ্টা করেন তাদের ভিতরে সবচাইতে উল্লেখযোগ্য ছিলেন ওলনাজ পদার্থবিদ হেন্ড্রিক লোরেন্জ্ (Hendrik Lorentz)। কিন্তু সুইজারল্যাণ্ডের পোটেন্ট অফিসের একজন অখ্যাত কেরানী ১৯০৫ সালে প্রকাশিত একটি বিখ্যাত গবেষণাপত্রে দেখিয়ে দেন পরম কালের ধারণা পরিত্যাগ করলে ইথার সম্পর্কিত সমস্ত ধারণাই অপ্রয়োজনীয় হয়ে যায়। এই অখ্যাত কেরানীর নাম আলবার্ট আইলস্টাইন। কয়েক সপ্তাহ বাদে ফরাসী গণিতবিদ আঁরি পয়েনকেয়ার (Henri Poincaré) একই রকম কথা বলেন। আইনস্টাইনের যুক্তিগুলি ছিল পয়েনকেয়ারের যুক্তির তুলনায় পন্থবিদ্যার নিকটতর। পয়েনকেয়ারের মত ছিল সমস্যাটা গাণিতিক। সাধারণত

নতুন তত্ত্বের কৃতিত্ব আইনস্টাইনকৈ দেওয়া হয় কিন্ত একটি গুরুত্বকৃত্তিকালৈরি সঙ্গে নিভিন্ন নিভিন্ন নিভিন্ন নিভিন্ন করা হয়।

সে সময় যাকে আপেক্ষিক তত্ত্ব বলা হোত তার মূলগত স্বীকার্য ছিল (fundamental postulate) অবাধে চলমান সমস্ত বস্তুপিও সাপেক্ষই বৈজ্ঞানিক বিধিগুলি এক হতে হবে এক্ সেটা হতে হবে বস্তুপিণ্ডের দ্রুতি নিরপে≆। এই স্বীকার্য নিউটনের গতিবিষয়ক তত্ত্ব সম্পর্কে সত্য ছিল ৷ কিছু এখন এই স্থীকার্য ম্যাক্সওফেল তত্ত্ব এবং আলোকের গতির ক্ষেত্রে বিস্তার লাভ ধরল। তাঁরা নিজেরা যত ফ্রান্টিতেই চলমান হোন না কেন আলোকের ফ্রান্ডির মাপন সমস্ত পর্যবেক্তক স্যাপেক্ত একই হবেঃ এই সরল চিদ্রাধারার কতগুলি উল্লেখযোগ্য ফলশ্রুতি রয়েছে। তার ভিতর সবচাইতে পরিচিত হল ভর এবং শক্তির সমতুলাতা (equivalence)। এ তত্ত্বের সারসংক্ষেপ রয়েছে আইনস্টাইনের বিখ্যাত সমীকরণ $E=mc^2$ -এ। এক্ষেত্রে E = শক্তি, m = ভর এবং c আলোকের দ্রুতি এবং এই বিধি: আলোকের দ্রুতির অধিক কোনো গতি হতে পারে না। শক্তি এক ভরের সমতুলাতা থাকার ফলে একটি বস্তুপিণ্ডের গতির ধকন তার যে শক্তি রয়েছে সে শক্তি তার ভবে যুক্ত হবে। অন্য কথায় বলা যায় তার দ্রুতি বাড়ানো কঠিনতর হবে। যে সমস্ত বস্তুপিশ্রের দ্রুতি আলোকের দ্রুতির কাছাকাছি, আসলে শুধুমাত্র সেই সমস্ত বরণিতের ক্ষেত্রেই এই অভিক্রিয়াব গুক্তর বয়েছে। উদাহনণ, বস্তুপিতের ফ্রন্ডি যদি আলোকের ফ্রন্ডির ১০ শতাংশ হয়, তাহলে তার তর বৃদ্ধি পাবে স্বাতাবিকের চাইতে শতকরা ০.৫ ভাগ মাত্র। কিম্ব তার দ্রুতি আলোকের দ্রুতির ১০ শতাংশ হলে তার ভর হবে স্বাভাবিক ভরের দ্বিগুণেরও কেশী। বস্তুপিতের ফ্রতি আলোকের ফ্রতির যত নিকটতর **হয়, তার ভরও ততই আরো কেশী তাড়াতাড়ি বাড়ে। সূতরাং তার ক্রতি বাড়াতে আরো** বেশী বেশী শক্তির প্রয়োজন হয়। আসঙ্গে বস্তুপিণ্ডের দ্রুণ্ডি কখনোই আলোকের ফ্রুণ্ডির সমান হতে পারে না। কারণ ভাহতো ভার ভর হবে অসীম। আর এর এবং শক্তির সমতুলাতার তত্ত্ব অনুসারে ঐ অবস্থায় শৌঁহাতে হলে তার প্রয়োজন হবে অসীম শক্তি। সেইজনা স্বাভাবিক বস্তুপিত্রের গতি অপেক্ষবাদ দ্বারা আলোকের গতির চাইতে নিমুগতিতে চিরকালের জন্য সীয়াবদ্ধ। শুধুয়াত্র আপোক কিয়া অন্য যে সমস্ত তরম্বের নিজস্ব কোনো তর নেই তারাই আলোকের প্রতিতে চলতে পারে।


অপেক্ষবাদের একই রকম উল্লেখযোগ্য ফলপ্রতি হল হান এবং কাল সম্পর্কে আমাদের চিব্রাধারায় বিপ্লব। নিউটনের তত্ত্ব অনুসারে একটি হান থেকে অন্য একটি হানে যদি আলোকের একটি ম্পানন (pulse) প্রেরণ করা যায় ডাইলে বিভিন্ন পর্যবেক্ষক সাপেক্ষ তার প্রমণকাল সম্পর্কে মতৈক্য হবে (কারণ কাল পরম)। কিছু আলোক কতন্ত্র গমন করেছে, সে বিষয়ে সব সমগ্র মতৈক্য হবে না (কারণ ছান পরম নয়)। যেহেত্, আলোকের ফ্রতি শুরুমার্র আলোক যে দূরত্ব অতিক্রম করেছে, তার সঙ্গে দূরত্ব অতিক্রম করেছে যে কাল বায় হয়েছে, তার ভাগমল। সুতরাং বিভিন্ন পর্যবেক্ষকদের ক্ষেত্রে আলোকের গতিবেগের মাপনে পার্থকা হয়। অথা অপেক্ষবাদ অনুসারে সমস্ত গর্যবেক্ষকের ক্রেত্রেই আলোকের চলনের দ্রুতি সম্পর্কে মতেক্য হবে। তবুও কিছু আলোক কতটা দূরত্ব প্রমণ করেছে, সে সম্পর্কে মতৈকা হবে

নি সৃতিরাং যে কাল ব্যয় হয়েছে সে সম্পর্কেও তাদের যতানৈকা হবে। (যে কাল ব্যয় হয়েছে সেটা হবে আলোক যে দূরত্ব অতিক্রম করেছে তাকে আলোকের দ্রুতি দিয়ে তাল করকো যে ভাগফল হয় সেই ভাগফল। দূরত্ব সম্পর্কে পর্যবেক্ষকদের মতৈকা হবে না। তবে আলোকের দ্রুতি সম্পর্কে তাদের মতৈকা হবে)। অন্য কথায় অপেক্ষবাদ পরম কাল সম্পর্কীয় ধারণাকে শেষ করেছে। দেখা গিয়েছে প্রতিটি পর্যবেক্ষকের অক্যাই কালের নিজস্ব মাপন পাকতে হবে। যে ঘড়ি সে বহন করছে সেই ঘড়িটাই সেই কাল নির্দেশ করবে। বিভিন্ন পর্যবেক্ষকেরা সমরূপ ঘড়ি বহন করলেও তারা যে কাল সম্পর্কে একমত হবেন তার কোনো নিক্ষয়তা নেই।

প্রতিটি পর্যবেক্ষকই একটি আলোক কিন্তা বেতার তরঙ্গের স্পন্দন পাঠিয়ে ঘটনাটি কোথায় এবং কখন ঘটেছে সেটা বলবার জনা রাভার যন্ত্র ব্যবহার করতে পারেন। স্পন্দনের একটি অংশ ঘটনায় (at the event) প্রতিফলিত হয়ে ফিরে আসে এবং পর্যবেক্ষক প্রতিফলনটি ফিরে আসবার কাল মাপেন। তা হলে স্পন্দনটি মধন পাঠানো হয়েছিল এবং প্রতিফলনটি মধন ফিরে এল সেই কালের অর্থেক হবে ঘটনার কাল : ঘটনার দূরত্ব হবে চলাচলের কালের অর্থেককে আলোকের দ্রুতি দিয়ে গুণ করলে যা হয় তাই। (এই অর্থে একটি ঘটনা হল এমন কিছু যা ছানে একটি কিনুতে এবং কালের একটা বিশিষ্ট কিনুতে ঘটে।) এই ধারণা (idea) দেখানো হয়েছে চিত্র ২.১ (পৃষ্ঠা ৪০)-এ। ছান-কাল চিত্রের এটা একটা উদাহরণ। এই পদ্ধতি ব্যবহার করলে যে পর্যবেক্ষকরা পরস্পের সাপেক্ষ চলমান তাঁরা একই ঘটনাকে ভিন্ন ভিন্ন ছানে এবং কালে আবোপ করকেন। কোনো বিশেষ পর্যবেক্ষকের মাপন অন্যকোনা পর্যবেক্ষকের মাপনের চাইতে বেলী নির্ভুল নয়। তবে প্রতিটি মাপনের ভিতরেই একটা সম্পর্ক রয়েছে। যে কোনো পর্যকেক্ষকই একটি ঘটনা সাপেক্ষ অন্য একজন পর্যবেক্ষক কি কাল এবং অবস্থান আবোপ করকেন সেটা হিসাব করে বলতে পারকেন— অবশ্য তিনি যদি আর একজনের আপেক্ষক গতিবেগ জানেন।

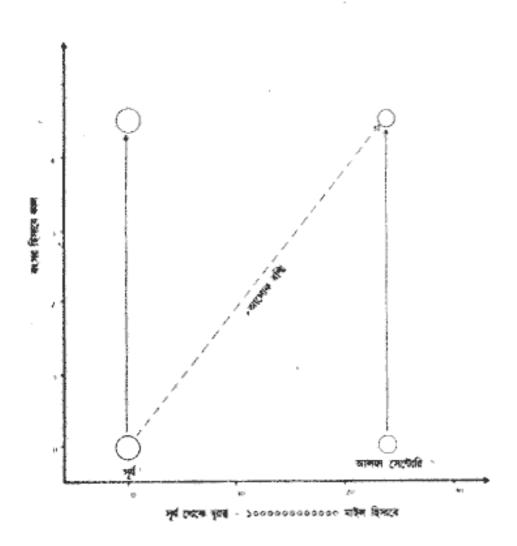
আন্ধকাল আমরা দূবত্ব নির্ভুলভাবে নির্ণয় করার জনা এই শদ্ধতিই বাবহার করি। কারণ, আমরা দৈর্ঘের চাইতে কাল অনেক নির্ভুলভাবে মাপতে পারি। কার্যক্ষেত্রে মিটারের সংজ্ঞা আলোক 0.000000003335640952 সেকেন্ডে যে দূরত্ব অভিক্রম করে, সেই দূরত্ব। কাল মাপা হয় একটি সিনিয়ম (cesium) ঘড়ি নিয়ে। (এই বিশেষ সংখ্যার কারণ হল: এটা মিটারের ঐতিহাসিক সংজ্ঞার অনুরূপ— পারিসে রক্ষিত একটি বিশেষ প্রাাটিনাম নতে অন্ধিত দৃটি চিন্তের বামিধিভে)। একই ভাবে আমরা আলোক সেকেণ্ড নামক আবো সুবিধান্ধনক নতুন একটি দৈর্ঘের একক ব্যবহার করতে পারি। এটার সংজ্ঞা শুধুমাত্র এক সেকেণ্ডে আলোক যে দূরত্ব অভিক্রম করে সেই দৈর্মা। অপোক্ষবাদে আজকাল আমরা দূরত্বের সংজ্ঞা নির্ধারণ করি কাল এবং আলোকের ক্রতির বান্ধিথিতে (in terms of)। সূতরাং এর্ম স্থাভাবিক ফলক্রতি হল প্রতিটি পর্যবেক্ষকের মাপনে আলোকের গভিবেগ একই হবে (সংজ্ঞা অনুসারে প্রতি 0.000000003335640952 সেকেণ্ডে এক মিটার)। ইবার সম্পর্কীয় ধারণা উপস্থিত করার কোনো প্রয়োজন নেই। মিচেলসন-মর্লি পরীক্ষায় দেখা গিয়েছে ইথারের অপ্তিত্ব

কোনোক্রমেই আবিষ্কার করা যায় নি। অপেক্ষবাদ কিন্ত স্থান এবং কাল সম্পর্কে আমাদের ধারণা মূলগতভাবে পরিবর্তিত করতে বাধ্য করে। আমাদের মানতেই হবে: কাল স্থান

চিত্র ২.১: সময় মাপা হরেছে উল্লাখনাবে এবং পর্যবেক্তকের কাছ পেকে দূরত্ব মাপা হয়েছে আনুত্রিকভাবে। বা নিকের উল্লাখ রেখা দিয়ে খান-কালের মধ্য দিয়ে পর্যবেক্তকের পথ দেখানো হছেছে। আলোকরশ্বির ঘটনা খৈকে বাভাবাতের পথ দেখানো হছেছে কর্ণবেশ্ব দিয়ে।

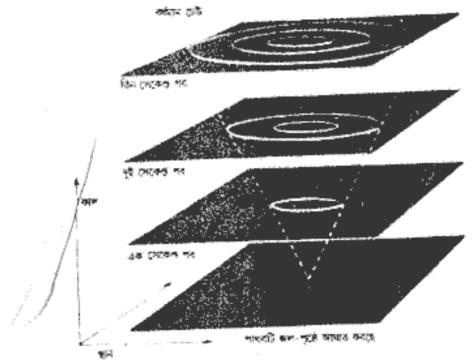
থেকে সম্পূর্ণ বিচ্ছিন্ন নয় এবং স্থান নিরপেক্ষও নয়। বরং এ দুটির সমধ্যে স্থান-কাল নামক বস্তু গঠিত হয়েছে।

সাধারণ অভিজ্ঞতায় বলে ছানে একটি বিন্দুর অবস্থান তিনটি সংখ্যা কিয়া তিনটি ছানাছ দিয়ে নির্দিষ্ট করা যায়। উনাহরণ, বলা যায় ঘরের একটি বিন্দু একটি দেওয়াল থেকে সাত ফুট মূরে, আর একটি দেওয়াল থেকে তিন ফুট মূরে এবং মেঝে থেকে পাঁচ ফুট উপরে। কিয়া নির্দেশ করা যায় একটি কিমু একটি বিশেষ অক্ষাংশ (latitude) এবং একটি বিশেষ প্রাথিমায় (longitude) এবং সমুদ্রতলের উপরে একটি বিশেষ উচ্চতায় অবস্থিত ছিল। স্বাধীনভাবে যে কোনো তিনটি ছানাছ বেছে নেওয়া যেতে পারে, অবশ্য সেগুলির সতাভার


বাাত্তি সীমিত। চাঁদের অবস্থান নির্দেশ করতে হলে কেউ পিকাডিলি সার্কাস থেকে কত মাইল উত্তরে এবং কত মাইল পশ্চিমে এবং সমুদ্রতল থেকে কত ফুট উচ্চতায়—এই বাশ্বিধি বাবহার করে না। তার বদলে সূর্য থেকে দূরত্ব কিয়া কোনো গ্রহের কক্ষতল (plane of orbit) থেকে দূরত্বের বাশ্বিধিতে এবং সূর্য ও চন্দ্রকে সংযোগকারী রেখা এবং সূর্য ও আলফা সেক্টেরীর (Alpha Centauri) মতো কোনো একটি নক্ষত্রকে সংযোগকারী রেখা দ্বারা গঠিত কোণের বাশ্বিধিতে নির্দেশ করা যায়। আমাদের দ্বাদ্বাপথে সূর্যের অবস্থানের বিবরণ দিতে হলে এই স্থানান্ধগুলি দিয়ে খুব সূবিধা হয় না। আমাদের দ্বাদ্বাপথ (galaxy) গোষ্ঠীর ভিতরে আমাদের দ্বাদ্বাপরে অবস্থান নির্দেশ করতে হলে এই স্থানান্ধগুলি দিয়েও খুব সুবিধা হয় না। আমাদের দ্বাদ্বান্ধগুলি দিয়েও খুব সুবিধা হয় না। আমাদের দ্বান্ধগুলি দিয়েও খুব সুবিধা হয় না। আমাদের চান্ধাণ্ড বিভাল করেও করেও বিকর ব্যবহার করা যায়।

একটি ঘটনা হল এমন একটি জিনিষ য়া হানের একটি বিন্দুতে এবং একটি বিশেষ কালে ঘটে। সুতরাং, চারটি সংখ্যা বা স্থানান্ধ দিয়ে তাকে নিদিষ্ট করা সন্তব। এ ক্ষেত্রেও স্থানান্ধ নির্বাচন যাদৃচ্ছিক (arbitrary)। যে কোনো তিনটি হানিক স্থানান্ধ এবং কালের যে কোনো মাপন ব্যবহার করা যেতে পারে। অপেক্ষবাদে স্থানিক এবং কালিক স্থানান্ধের ভিতরে বাস্তবে কোনো পার্থকা নেই। ঠিক যেমন নেই দুটি স্থানিক স্থানান্ধের ভিতরে। স্থানান্ধের একটি নতুন কেতা (set) বেছে নেওয়া যেতে পারে। বক্তন- সেটাতে আগেকার প্রথম এবং দ্বিতীয়ের সমন্বয় করে প্রথম স্থানান্ধটি হয়েছিল। উদাহরণ: পৃথিবীর উপরে একটি বিন্দুর অবস্থান পিকাতিলি থেকে উত্তরে ক্ষেক মাইল এবং পশ্চিমে ক্ষেক মাইল হিসাবে না মেপে, পিকাতিলি থেকে উত্তর-পূর্বে ক্ষেক মাইল এবং উত্তর-পশ্চিমে ক্ষেক মাইল কর্বেও মাপা যেতে পারে। তেমনি, অপেক্ষবাদে প্রাচীন কাল (সেকেণ্ডে) এবং পিকাতিলি থেকে দূরক্বের (আলোক সেকেণ্ডে) সমন্বয় করে একটি নতুন কালিক স্থানান্ধ ব্যবহার করা যেতে পারে।

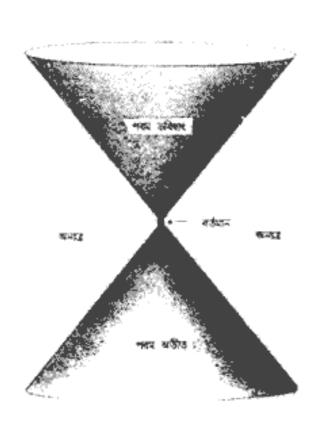
অনেক সময় একটি ঘটনার অবস্থান চার মাত্রিক স্থানে (four dimensional space) অর্থাৎ স্থান-কাল নির্দিষ্ট করার জন্য চারটি স্থানান্থের বাধিধিতে চিন্তা করা সুবিধা। এর নাম স্থান-কাল। চারমাত্রিক স্থান করান করা অসম্ভব। বান্তিগতভাবে আমার পক্ষে ত্রিমাত্রিক স্থানের দৃষ্টিকরান (visualize) করাই বেশী কঠিন। কিন্তু দ্বিমাত্রিক স্থানের, যথা পৃথিবীর পৃষ্ঠের (surface) মতো স্থানের চিত্রান্থন সহন্ধ (পৃথিবীর পৃষ্ঠ দ্বিমাত্রিক, কারণ, দু'টি স্থানান্ধ দিয়ে একটি বিন্দুর অবস্থান নির্দিষ্ট করা যায়: দ্রাঘিমা এবং অক্ষাংশ (longitude & latitude))। আমি সাধারণত এমন চিত্র ব্যবহার করব-- যাতে কাল বৃদ্ধি পায় উপর দিকে এবং স্থানিক মাত্রাগুলির একটি দেখানো হয় আনুভূমিকভাবে (horizontally)। অনা দুটি স্থানিক মাত্রা অগ্রান্থা করা হয় কিন্তা অনেক সময় তাদের একটি দেখানো হয় দর্শনানুগাতের (perspective) সাহাযো। (এগুলিকে বলা হয় স্থান-কাল চিত্র, চিত্র ২.১-এর মতো।) উদাহরণ: চিত্র ২.২-এ কাল মাণা হয়েছে বংসর হিসাবে এবং উর্দ্ধদিকে। আল্ফা সেন্টোরী (Alpha Centauri) খেকে সূর্য এবং আলফা সেন্টোরীর (Alpha Centauri) খেকে সূর্য এবং আলফা সেন্টোরীর (Alpha Centauri) গাব দেখানো হয়েছে চিত্রের ভান ও


বাম পাশে উপ্লম্ব রেখা দিয়ে। সূর্য থেকে আগত একটি আলোকরশ্মি করিছা। বিভিন্ন নিটি । নিটিট । নিটি । নিটিট । নিটি । ন

আমরা দেখেছি ম্যাস্কওয়েলের সমীকরণ ভবিষ্যন্ত্বাণী করেছিল আলোকের উৎসের দ্রুতি যাই হোক না কেন, আলোকের দ্রুতি একই থাকবে। এই তথ্যের সতাতা নিযুত মাপনের সাহায্যে প্রমাণিত হয়েছে। এর ফলপ্রুতি হল যদি একটি বিশেষ কালে স্থানের একটি বিশেষ

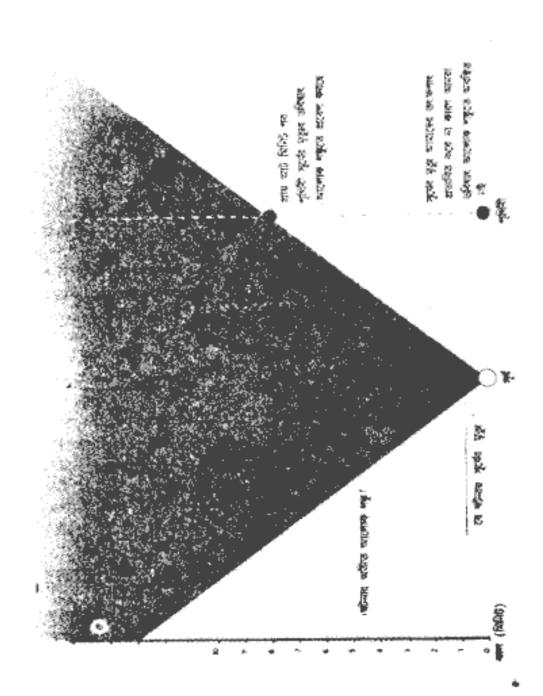
চিত্র - ২.২

বিন্দুতে আলোকের একটি স্পন্দন উৎসারিত হয়, ডাহলে কালের গতির সঙ্গে সঙ্গে সেটা একটা আলোকের গোলকরণে বিস্তার লাভ করবে। তার আকার এবং অবস্থান হবে উৎসের গতিনিরপেক্ষ। এক সেকেণ্ডের এক মিলিয়ান (১০,০০,০০০) ভাগের এক ভাগ সময়ে


ভবিষ্
ত হৈলক পদ্
ত বৈউন্নান |
ভবিষ্
ত বিটান বিশ্বনান |
ভবিষ্
ত বিশ্বনান |
ভবিষ্
ত বিশ্বনান |
ভবিষ্
ত বিশ্বনান |

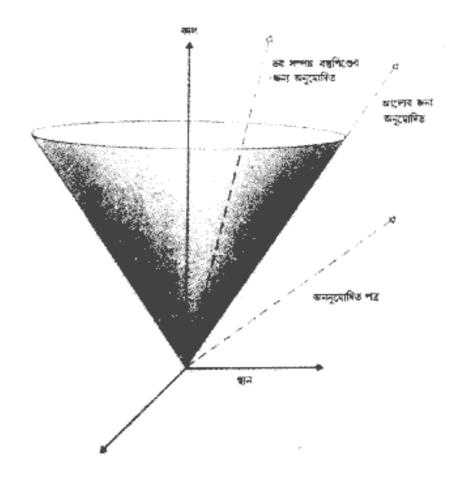
চিত্র - ২.৩

চিত্র - ২.৪

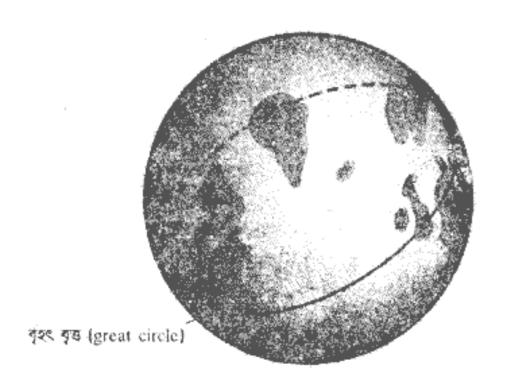

ternet.cজাণা কাশ

আলোক বিস্তার লাভ করে এমন একটা গোলক গঠন করবে যার বাগের হবে ৩০০ মিটার।
এক সেকেণ্ডের এক মিলিয়ান ভাগের দুভাগে ব্যাসার্থ হবে ৬০০ মিটার বং এইলাবে চলবে।
বাাপারটা একটা পুকুরের পৃষ্টে (surface)টিল ফেললে তেউগুলি ফেলাে বিস্তার লাভ করে
অনেকটা সেই রকম। তেউগুলি বিস্তার লাভ করে একটি বৃত্তরূপে এবং কলের গভির সঙ্গে
সঙ্গে বৃত্তটি আকারে বাড়ে। যদি পুকুরের পৃষ্টের দুই মাত্রা এবং কালের এচ মাত্রা মিলিয়ে
একটি ত্রিমাত্রিক প্রতিরূপের কথা ভাবা যায় তাহলে তেউয়ের বিস্তারমান ত্ত একটি শব্ব
(cone)সৃষ্টি করবে। শব্বুর প্রান্তিক শীর্ষ বিন্দু থাকবে সেই হান-কালে ফেখানে তিলটি জলে
আঘাত করেছিল (চিত্র - ২.৩)। একইভাবে একটি ঘটনা থেকে বিস্তারমান অব্যোক্ত হারমাত্রিক
স্থান-কালে একটি ত্রিমাত্রিক শব্বু সৃষ্টি করে। এই শব্বুকে বলা হয় ঘটনার ভবিশ্বিৎ আলোক

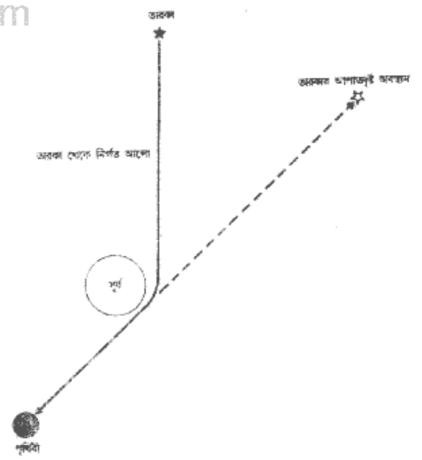
চিত্ৰ ২.৫


শঙ্কু। এইভাবেই আমরা অতীত আলোক শঙ্কু নামে আর একটি শঙ্কু আঁকতে পারি। সেগুলি এমন কতগুলি ঘটনার কেতা (set) যেখান থেকে আলোকের একটি স্পন্দন নির্দিষ্ট ঘটনায় পৌঁছাতে পারে (চিত্র - ২.৪)।

একটি ঘটনা P-এর ভবিষাৎ এবং অতীত আলোক শঙ্কু স্থান-কালকে তিনভাগে বিভক্ত করে (২.৫ চিত্র)। ঘটনাটির পরম ভবিষ্যৎ হল ভবিষ্যৎ আলোক শব্দু (cone) P এর ভিতরকার একটি অঞ্চল। এটি হল P-তে যা ঘটনা ঘটে সেটা সম্ভাবা যত ভাবে প্রভাবিত হতে পারে সে রকম সব ঘটনার একটি কেতা (set of all events) । আলোক শব্দু P-এর বাইরের ঘটনায় কখনো P থেকে উৎসারিত সঞ্চেত পৌঁছাতে পারে না। তার কারণ, কোনো কিছুই আলোকের চেয়ে দ্রুততর যেতে পারে না। সূতরাং P-তে কি ঘটছে তাই দিয়ে তারা প্রভাবিত হতে পারে না। অতীত আলোক শঙ্কুর অন্তর্বতী অঞ্চলই P এর পরম অতীত(absolute past) + আলোকের দ্রুতি কিম্বা তার নিমুত্তর দ্রুতিতে চলমান যে সমস্ত সঞ্চেত সমস্ত ঘটনার কৈতা (set of all events) থেকে P-তে পৌঁছাতে পারে, এ হল ভাই। সূতরাং এটা হল সেই সমস্ত ঘটনার কেতা যার P-তে বা ঘটছে তাকে প্রভাবিত করার সম্ভাবনা আছে। কোনো বিশেষকালে স্থানের যে অঞ্চল P-এর অতীত আলোক শন্তব অস্তর্ভুক্ত, সে অঞ্চলের প্রত্যেক হানে যা ঘটছে তা যদি জানা থাকে তাহলে P-তে কি ঘটবে সে সম্বন্ধে ভবিষ্যদ্বাণী করা সম্ভব। অনা স্থান হল স্থান-কালের সেই অঞ্চল যা P-এর অতীত কিয়া ভবিষাং আলোক শঙ্কর অন্তর্ভক্ত নয়। সেই অন্য স্থানের ঘটনা P-তে সংঘটিত ঘটনাগুলিকে প্রভাবিত করতে পারে না কিম্বা তাদের দ্বারা প্রভাবিত হতেও পারে না। উদাহরণ: যদি এই মুহুর্তেই সূর্য আলোক বিকিরণ বন্ধ করে তাহলে বর্তমান কালে পৃথিবীতে অবস্থিত জিনিষের উপর তার কোনো প্রভাব পড়বে না। তার কারণ, সূর্য যখন নিভে গেল (চিত্র - ২.৬) তখন পৃথিবীর জিনিবগুলি থাকবে ঘটনার অন্য অঞ্চলে। ব্যাপারটা আমরা জানতে পারব শুধু আট মিনিট পর। অর্থাৎ সূর্য থেকে আমাদের কাছে আলো পৌঁছাতে যৈ সময় লাগে তারপর। শুধুমাত্র সেই সময়ই পৃথিবীস্থ ঘটনাবলী সূর্যের নিভে যাওয়া ঘটনার ভবিষাৎ আলোক শন্তুর অন্তর্ভুক্ত হবে। একইভাবে বলা যায় এই মৃতুর্তে এই মহাবিশ্বের দূরতর অঞ্চলে कি ঘটছে তা আমরা জানি না। সুদুৱের নীহারিকা থেকে আগত যে **আলোক আ**মনা দেখি সে আলোক বছ মিলিয়ান বংসর আগে সেই নীহারিকাগুলি থেকে রওনা হয়েছিল। দূরতম যে বস্তু আমরা দেখতে পাই ্ তাদের ক্ষেত্রে আলোক রওনা হয়েছে প্রায় আট হাজার মিলিয়ান বছর আগে। সূতরাং যখন আমরা মহাবিশ্ব দেখি তখন আসলে দেখতে পাই মহাবিশ্বের অতীত রূপ।


আইনস্টাইন এবং প্রেনকেয়ার (Einstein & Poincaré) ১৯০৫ সালে যা করেছিলেন, মহাক্ষীয় অভিক্রিয়াকে যদি সেইরকম অগ্রাহ্য করা যায় তাইলে যা হবে সেটা হল বিশিষ্ট অপেক্ষবাদ। হান-কালের প্রতিটি ঘটনা সাপেক্ষই আমরা একটি আলোক শঙ্কু গঠন করতে পারি [সেই ঘটনার (at the event) হান-কালে উৎসারিত আলোকের সম্ভাবা সমস্ত গতিপথের কেতা (set)] এবং যেহেতু প্রতিটি ঘটনা সাপেক্ষ এবং প্রতিটি অভিমুখেই আলোকের দ্রুতি এক, সেইজন্য সমস্ত আলোক শঙ্কুই হবে সমরূপ এবং সবগুলির অভিমুখই হবে এক। এই তত্ত্ব আরো বলে আলোকের চাইতে দ্রুতগতি কারো হতে পারে না। এর অর্থ হল হান-কালের ভিতর দিয়ে যে কোনো বস্তরই গতিপথের প্রতিরাপ এমন একটি রেখা

যা তার উপরে প্রতিটি ঘটনার আলোক শঙ্কুর অভ্যন্তরে অবস্থিত।


डिंड - २.9

সমস্ত পর্যবেক্ষক সাপেক্ষই আলোকের দ্রুতি অভিন্ন (মিচেসসন-মর্লির পরীক্ষাতে এটাই দেখানো হয়েছে)। এই তথা ব্যাখ্যায় এবং যখন কোনো বস্তু আলোকের দ্রুতির কাছাকাছি দ্রুতিতে চলমান হয় তথন কি ঘটে তার বিবরণ দেওয়ার ব্যাণারে বিশিষ্ট অপেক্ষবাদ খুবই সাফল্য লাভ করে। নিউটনের মহাকর্ষীয় তত্ত্বের সঙ্গে এর কিন্তু অসঙ্গতি ছিল। সে তত্ত্বের মতে বস্তুগুলি পরস্পরকে আর্ক্ষণ করে এবং আকর্ষণবল তাদের অন্তর্বতী দূরত্বের উপর নির্ভরণীল। এর অর্থ হল: একটি বস্তুকে যদি সরানো যায় তাহলে অন্য বস্তুটির উপরে প্রযুক্ত বলের তাৎক্ষনিক পরিবর্তন হবে। কিন্তু অন্য ভাবে বলা যায়, মহাকর্ষীয় অভিক্রিয়ার অসীম গতিতে চলমান হওয়া উচিত। অথচ বিশিষ্ট অপেক্ষবাদের দাবী মহাক্র্যীয় বলের দ্রুতি হওয়া উচিত আলোর দ্রুতির সমান বা তার চাইতে কম। ১৯০৮ সাল থেকে ১৯১৪ সাল পর্যন্ত আইনস্টাইন চেষ্টা করেছেন এমন একটি মহাক্র্যীয় তত্ত্ব আবিষ্কার করতে যার সঙ্গে বিশিষ্ট অপেক্ষবাদের সঙ্গতি থাকবে। কিন্তু তিনি সঞ্চল হন নি। শেষে ১৯১৫ সালে আমরা যাকে ব্যাপক অপেক্ষবাদ বলি সেই ভক্ত্ব তিনি উপস্থিত করেন।

চিত্র - ২.৮

আইনস্টাইন এই বিপ্লবী প্রস্তাব উত্থাপন করেন যে, মহাক্ষীয় বল অন্যানা বলের মতো নয়। আগে যেরক্য অনুমান করা গিয়েছিল হান-কাল সেরক্য সমতল (flat) নয়, এটা বক্র কিছা বন্ধিম (warped) । তার কারণ, হান-কালে তর এবং শক্তির বন্ধন। আইনস্টাইনের মতে মহাকর্য এরই ফলক্রতি। পৃথিবীর মতো বন্ধপিও যে বন্ধিম কক্ষে চলে তার কারণ মহাকর্য নামক বল নয়, তারা বন্ধিম হানে পর্জুপথের নিকটতম পথ অনুসরণ করে। সে পথের নাম জিওডেসিক (geodesic) । নিকটবতী দৃটি বিন্দুর মধ্যবতী হ্রপ্তম (কিয়া দীর্ঘতম) পথের নাম জিওডেসিক। উদাহরণ: পৃথিবীর পৃষ্ঠদেশ (surface) একটি দ্বিমান্রিক বন্ধিম স্থান। পৃথিবীর উপরের জিওডেসিককে বলা হয় বৃহৎ কৃত্ত (great circle) এবং দৃটি বিন্দুর ভিতরে এটাই হ্রপ্রতম পথ (চিত্র ২.৮)। যেহেতু দৃটি বিমানকন্দরের ভিতরে এটাই হ্রপ্রতম পথ (চিত্র ২.৮)। যেহেতু দৃটি বিমানকন্দরের ভিতরে এটাই হ্রপ্রতম পথ (চিত্র ২.৮)। বেহেতু দৃটি বিমানকন্দরের ভিতরে এটাই হ্রপ্রতম পথ সেইজনা বিমানের নাবিক (navigator) বিমানচালককে এই পথে যেতে বলো। বাাপক অপেক্ষবাদে বন্ধপিওগুলি সব সময়ই চতুর্মান্রিক স্থান-কালে বন্ধুসরণ করে। কিন্তু আমাদের মনে হয় তারা আমাদের ব্রিমান্তিক স্থানে বন্ধিম পথে চলমান। (এটা অনেকটা পর্বতময় জমির উপর দিয়ে চলমান বিমান দেখার মতো। বিমানটি ব্রিমান্তিক স্থানে একটি সরলরেখা অনুসরণ করে, কিন্তু এর ছায়া দ্বিমান্তিক তুমির উপর একটি বন্ধিম পথ অনুসরণ করে)।

চিত্র - ২.১

সূর্যের ভর স্থান-কালকে এমনভাবে বাঁকিছে দেয় যে পৃথিবী যদিও চতুর্মান্ত্রিক স্থান-কালে গ্রন্থপথ অনুসরণ করে, তবুও আমাদের মনে হয় পৃথিবী ব্রিমান্ত্রিক স্থানে বৃদ্ধান্তার কক্ষে চলমান। আমলে ব্যাপক অপেক্ষরাদ গ্রহণ্ডনির কক্ষ সম্পর্কে যে ভবিষাদ্বাদী করছে তা সমাকর্ম বিষয়ে নিউটিনীয় তত্ত্বের নক্ষে প্রায় নিতুঁলভাবে অভিনা। বৃধান্তাহ সূর্যের নিউটতম এবং মহাকর্মীয় অভিক্রিয়া তার ক্ষেত্রে সবচাইতে শতিলালী। তাছাড়া তার কক্ষ একটু লম্বাটে। ব্যাপক অপেক্ষরাদ কিন্তু ভবিষাদ্বাদী করেছে এই উপবৃত্তের দীর্ঘ ক্ষক্ষ (long axis) সূর্যের চতুম্পার্লে বৃত্তাফারে ১০,০০০ বছরে এক ডিগ্রা হিসাবে ঘূরবে। এই অভিক্রিয়া ক্ষুদ্র হলেও ১৯১৫ সালের আগেই এটা দেখা গিয়েছিল এবং আইনস্টাইনের তত্ত্বের সভাতা প্রমাণের প্রথম সাক্ষাপ্তলির ভিতরে এটি ছিল একটি। আধুনিক কয়েক বছরে অন্যান্য গ্রহণ্ডলির কক্ষের (orbit) নিউটনীয় ভবিষাদ্বাদী থেকে আবঙ ক্ষুদ্রতর বিচাতি, রাভার (Radar)-এর সাহায্যে মাপা হয়েছে। দেখা গিয়েছে, ব্যাপক অপেক্ষব্যদের ভবিষাদ্বাদীর সঙ্গে তার ঐক্য ব্যেছে।

আলোক বিশ্বকৈ স্থান-কালে জিওডেসিক অবশাই অনুসরণ করতে হবে। তাছাড়া স্থান যে বক্র এই তথ্যের অর্থ হল। ছানে আলোককৈ আর ক্ষতুরেখার চলমান বলে মনে হবে না। বিভারং নাপক অপেক্ষবাদের ভবিষাদ্বাণী হল, মহাক্ষীয় ক্ষেত্র আলোককে বাঁকিয়ে দেবে) উদাহনণ। এই তত্ত্বের ভবিষাদ্বাণী অনুসারে সূর্যের নিকটবটী বিন্দুগুলির আলোক

শদু সূর্যের তরের জনা অন্তর অভিমুখে সামান্য বন্ধিম হবে। এর অর্থ ইল, নূরবর্তী ভারকা থেকে নিগত আলোক সূর্যের কাছ দিয়ে যাওয়ার সময় বিচ্যুত (deflected) হবে। এই বিচ্যুতির কোণ হবে সামান্য। ফলে পৃথিবীর একজন পর্যবেক্ষক সাপেক্ষ ভারকাটিকে ভিন্ন স্থানে অবস্থিত বলে মনে হবে (চিক্র-২.৯)। অবশা তারকাটি থেকে আলোক যদি সব সময়ই সূর্যের নিকট দিয়ে গমন করে ভাহলে আলোক বিচ্যুত (deflected) হক্ষে, না কি ভারকাটি যেখানে দেখা যাচ্ছে সেখানেই অবস্থিত—সেটা আমরা বলতে পারব না। কিন্তু পৃথিবী যখন সূর্যকে প্রদক্ষিণ করে তখন বিভিন্ন ভারকাকে সূর্যের পশ্চাদ্বতী বলে মনে হয় এবং ভাদের আলোকের বিচ্যুতি ঘটে। সূতরাং সূর্য সাপেক্ষ ভাদের আপাতদৃষ্ট অবস্থানের পরিবর্তন হয়।

এই অডিক্রিয়া স্বাভাবিক অবস্থায় দেখা যুব শক্ত। তার কারণ, সূর্যের আলোকের দরুন যে সমস্ত তারকা সূর্যের নিকটবর্তী সেগুলিকে পর্যকেকণ করা অসম্ভব হয়ে দাঁডায়। কিন্তু সূর্যগ্রহণের সময় এই পর্যবেক্ষণ সম্ভব। তখন সূর্যের আলোককে চাঁদ আটকে দেয়। ১৯১৫ সালে আলোকের বিচ্যুতি সম্পর্কে আইনস্টাইনের ভবিষ্যদ্বাণীর ভাৎক্ষণিক পরীক্ষা সম্ভব হয়নি। কারণ, তখন প্রথম বিশ্বযুদ্ধ চলছিল। ১৯১৯ সালের আগে পর্যন্ত এ পরীক্ষা হয়নি। ১৯১৯ সালে একটি ব্রিটিশ অভিযাত্রী দল পশ্চিম আফ্রিকা থেকে একটি গ্রহণ পরীক্ষা করে দেখিয়েছিলেন, আলোক সতিইে সূর্য দ্বারা বিচ্যুত (deflected) হয়। অর্থাৎ তত্ত্ব যা ভবিষ্যত্বাণী করেছে, তাই হয়। একটি জার্যান তত্ত্ব ব্রিটিশ বৈজ্ঞানিক শ্বারা প্রমাণিত হওয়া তখনকার দিনে অর্থাৎ প্রথম বিশ্বযুদ্ধের পর দৃটি দেশের বন্ধুত্ব পুন:স্থাপনের সপক্ষে একটি পদক্ষেপ বলে অভিনন্দিত হয়েছিল। সেইজন্য ব্যাপারটা যেন একটা পরিহাস। তার কারণ, সেই অভিযানে যে আলোকচিত্রগুলি নেওয়া হয়েছিল পরে সেগুলি পরীক্ষা করে দেখা গিয়েছে. তাঁরা যে অভিক্রিয়া মাপতে চেষ্টা করেছিলেন আলোকচিত্রগুলিতে তুল ছিল তার সমান সমান। তাঁদের মাপনটা ছিল নেহাৎই সৌভাগ্যের ব্যাপার। কিন্তা তাঁরা যে ফল পেতে চেয়েছিলেন সেটা আগে থাকতেই জানা থাকার দরনাই ব্যাপারটা ঘটেছিল। বিজ্ঞানে এরকম ঘটনা ঘটা অস্বাভাবিক নয়। তবে পরবর্তী কয়েকটি পর্যবেক্ষণে আলোকের এই বিচাতি যে সভা সেটা নির্ভুলভাবে দেখা গিয়েছে।

বাশক অপেক্ষবাদের আর একটি ভবিষাদ্বাণী হল, পৃথিবীর মতো গুরু ভর সম্পন্ন
কোনো বস্ত্রশিশুর সন্নিকটে সময়ের গতি ক্লথ বলে মনে হবে। তার কারণ, আলোকের
ম্পন্দান্ধ (frequency —অর্থাৎ সেকেণ্ড প্রতি আলোক তরক্তের সংখ্যা) এবং আলোকর
মাজির ভিতরে একটি সম্পর্ক রয়েছে। শক্তি যত কেশী হবে ম্পন্দান্ধ তাত বাড়বে। আলোক
পৃথিবীর মহাকর্ষীয় ক্ষেত্রের ভিতর দিয়ে যত উপরে যাবে ওতই তার শক্তি ক্লয় হবে। সূতরাং
তার কম্পান্ত কমে যাবে (এর অর্থ হল একটি তরক্ষশীর্ষ থেকে পরবর্তী তরক্ষশীর্ষের মধাবতী
কালের দৈর্ঘ্য বৃদ্ধিপ্রাপ্ত হবে)। পুর উচ্চে অরক্ষিত কোনো লোকের মনে হবে নিচের সব
ঘটনাই একটু দেরীতে ঘটছে। এই ভবিষাদ্বাণী পরীক্ষা করা হয়েছিল ১৯৬২ সালে। তথন
একটি জলাধার হুন্তের উপরে এবং নিচে একজোড়া নির্ভুল ঘড়ি স্থাপন করা হয়েছিল। যে
ঘড়িটা নিচে ছিল অর্থাৎ পৃথিবীর নিকটতর ছিল, দেখা গেল তার গতি ধীরতর। এ তথোর

সন্ধিত বাশিক অপেক্ষবাদের নির্ভূল ঐক্য প্রয়েছে। আধুনিক কালে পৃথিবীর উপরে বিভিন্ন উচ্চতায় স্থাশিত বিভিন্ন ঘড়ির দ্রুতির পার্থকোর যথেষ্ট ব্যবহারিক গুরুত্ব রয়েছে। কৃত্রিম উপপ্রহ (satellites) থেকে আগত সঙ্কেতের ভিত্তিতে নির্ভূল নৌ এবং বিমান চালন ব্যবস্থার অভ্যুদয়ের সঙ্গে সঙ্গেই এর গুরুত্ব বেড়েছে। ব্যাপক অপেক্ষবাদের ভবিষাদ্বাধী অগ্রাহ্য করলে অবস্থানের হিসাবে কয়েক মাইল পর্যন্ত ভূল হতে পারে।

নিউটনের গতি বিষয়ক বিধি স্থানে পরম অবস্থান সম্পর্কীয় চিন্তাধারা একদম শেষ করে দেয়। অপেক্ষবাদ শেষ করেছে পরম কালকে। এক জ্যোড়া যমজের কথা ভাবা যাক। অনুমান করা হোক, একজন থাকল একটি পাহাডের চুড়াতে আর একজন রইল সমুদ্রপৃষ্টের উন্তভায় অবস্থিত কোনো সমতলে। প্রথম জনের বয়স দিতীয় জনের তুলনায় তাড়াতাড়ি বাড়বে। সুতরাং তাদের যদি আবার দেখা হয় তাহলে একজনকে আর একজনের চাইতে বয়স্ক বলে মনে হবে। এক্ষেত্রে বয়সের পার্থকাটা হবে অতি সামান্য। কিন্তু পার্থকাটা বেলী হবে যদি তাদের ভিতরে একজন মহাকাল যানে চড়ে আলোকের দ্রুতির কাছাকাছি দ্রুতিন্তে প্রমণ করতে বার হয়। যখন সে ফিরবে তখন সে পৃথিবীতে যে ছিল ভাব তুলনায় অনেক বেলী তরুণ থাকবে। এ ব্যাপারটাকে কলা হয় যমজ সম্পর্কীয় স্থবিরোধ (twin paradox)। কিন্তু এটা শুমুমাত্র তখনই স্থবিরোধ, যখন মনের ভিতরে পরম কাল সম্পর্কে ধারণা রয়েছে। অপেক্ষবাদে কোনো অনন্য পরম কালের অস্তিত্ব নেই, তার বদলে রয়েছে প্রতিটি ব্যক্তির কালের নিজস্ব যাপন। সেটা নির্ভর করে তার অবস্থানের উপরে এবং সে কি ভাবে চলমান তার উপরে।

১৯১৫ সালের আগে ধারণা ছিল স্থান এবং কাল এক একটি স্থির ক্ষেত্র (archa)।
ঘটনাগুলি ঘটে সেখানে, কিন্তু সেখানে যা ঘটছে তার দ্বারা ক্ষেত্রটি নিজে এভাবিত হয়
না। এমন কি বিশিষ্ট অপেক্ষবাদেব ক্ষেত্রেও এটাই ছিল সতা। বস্তুপিগুগুলি দল্যান। তারা
পরস্পরকে আকর্ষণ কিন্তা বিকর্ষণ করে কিন্তু কাল এবং স্থান নির্বাধি, তার জোনো বিকার
নেই (continued unaffected)। স্থান এবং কালকে চিরস্থায়ী ভাবাই ছিল স্বাভাবিক।

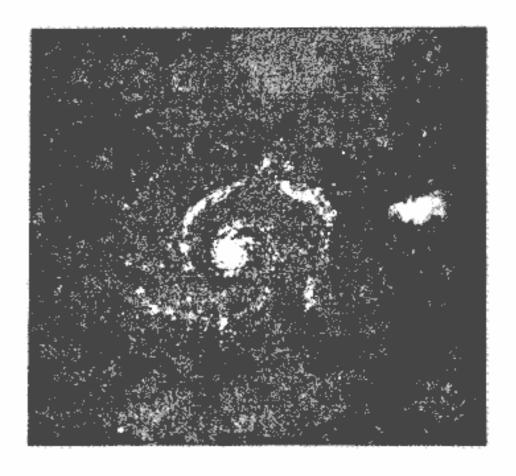
কিন্তু বাাপক অপেক্ষবাদে পরিস্থিতিটা অনেকটাই অন্যরকম। এখন স্থান এবং কাল গতিশীল রাশি। একটি বন্ধপিও যখন চলমান কিন্তা একটি বল যখন ক্রিয়াণীল, তখন সে স্থান-কালের বক্রতা প্রভাবিত করে এবং স্থান ও কালের গঠন আবার প্রভাবিত করে বন্ধপিওগুলির চলন এবং বিভিন্ন বলের ক্রিয়া। মহাবিশ্বে যা কিছু ঘটছে সেগুলি শুধু হান-কালকে প্রভাবিত করে তাই নয়, ছান-কাল নিজেরাও তাদের দ্বারা প্রভাবিত হয়। ক্রিত যেমন মহাবিশ্বে যে ঘটনাগুলি ঘটছে স্থান-কাল সম্পর্কে ধারণা ছাড়া সেগুলি সম্পর্কে বলা সম্ভব নয়। ব্যাপক অপেক্ষবাদেও তেমনি মহাবিশ্বের সীমানার বাইরে স্থান-কাল সম্পর্কে বলা অথহীন।

পরবর্তী দশকগুলিতে স্থান-কাল সম্পর্কে এই নতুন বোধ (understanding) আমানের মহাবিশ্ব সম্পর্কীয় ধারণায় বিপ্লব এনেছে। আমানের প্রাচীন ধারণা ছিল: মহাবিশ্ব সূলত অপরিবর্তনীয়। তার অক্তিই চিরকাল ছিল এবং থাকবে। এর জায়গায় বর্তমান ধারণা। মহাবিশ্ব গতিশীল এবং প্রসারমান। সীমিডকাল পূর্বে তার করু এবং ভবিষাতে সীহিতকাল পরে তার

শেষও হতে পারে। পরবর্তী অধ্যায়ের বিষয়বন্ধ এই বিপ্লব। বহু বছর পরে তাত্ত্বিক পদার্থবিদায়ে Ternet.com আমার গবেষণা শুরু হয়েছিল এই বিন্দু খেকে। রজার পেনরোজ (Roger Penrose) এবং আমি দেখিয়েছিলাম, আইনস্টাইনের ব্যাপক অপেক্ষবাদের ভিতরে নিহিত রয়েছে এই তত্ত্ব অর্থাৎ মহাবিশ্বের একটি শুরু রয়েছে এবং হয়তো একটা শেষও আছে।

প্রসারমান মহাবিশ্ব

(The Expanding Universe)


কৃষ্ণপক্ষের নির্মল আকাশের দিকে তাকালে সবচাইতে উচ্ছল যে সমস্ত বস্তুপিশু দেখা যায়, খুব সম্ভবত সেগুলি শুক্র, মঙ্কল, বৃহস্পতি এবং শনি গ্রহ। তাহাড়া খুব বেশী সংখ্যক তারকাও থাকে। সেগুলি আমাদের সূর্যেরই মতো তবে আমাদের কাছ থেকে অনেক দূরে। আসলে এই স্থির তারকাগুলির কিছু কিছুকে দেখা যায় পৃথিবীর সূর্য প্রদক্ষিণের সঙ্গে সঙ্গে তাদের পরস্পর সাপেক অবছানের সামানা পরিবর্তন করতে। তারা মোটেই ছিব নয়। এব কারণ তলনায় তারা আমাদের কাছাকাছি। পৃথিবী সূর্য প্রদক্ষিণ করার সঙ্গে সঙ্গে আমরা ঐ তারকাগুলিকে আমাদের বিভিন্ন অবস্থান খেকে দেখতে পাই। ঐগুলিকে দেখা যায় দূরতর ভারকাগুলির পশ্চান্পটে। এটা ভাগ্যের কথা, কারণ, এব ফলে আমরা ঐ সমস্ত ভারকা থেকে আয়াদের পূরত্ব প্রত্যক্ষভাবে মাণতে সক্ষয়। ভারা যত নিকটতর হয় তাদের চলাচলও তত বেশী দৃষ্টিগোচর হয়। নিকটতম তারকার নাম প্রক্রিয়া সেটেটারী (Proxima Centauri)। এর দুরত্ব প্রায় চার আলোকবর্ধ (ঐ তারকা থেকে আলোক পৃথিবীতে শৌঁহাতে সময় লাগে চার বছর) কিম্বা প্রায় ্ও মিলিয়ান মিলিয়ান মাইল। খালি চোবের যে সমস্ত তারা দেখা যায় সেগুলির বেশীর ভাগেরই দূবত আমাদের কাছ খেকে কয়েক ল' আলোকবর্ষের ভিডরে। তুলনায় আয়াদের সূর্য আয়াদের কাছ খেতে যাত্র আট আলোক মিনিট দূরে। দৃশাযান তারকাগুলি রাতের আকাশের সবটাই জুড়ে থাকে বলে মনে হয়। কিছু সেগুলি বিশেষ করে একটি বন্ধনীতে কেন্দ্রীভূত। আমনা তার নাম দিয়েছি ছায়াপথ (Milky Way)। বহু বছর আগে, অর্থাৎ ১৭৫০ সালে কিছু কিছু জ্যোতির্বিজ্ঞানী মত প্রকাশ করেছিলেন: যদি অনুমান করে নেওয়া যায় : দৃশ্যমান ভারকাথালির অধিকাংশই একটি চাফতির মতো বাহ্যিক গঠনের (disklike

configuration) অন্তর্ভুক্ত তাহলে ছায়াপথের দৃশামান রূপ ব্যাখ্যা করা সম্ভবি বিশ্বনীর ভাষার নি ি ি ি ি ি ে ি ে আ যাকে বলে: সর্পিল ছায়াপথ (spiral galaxy)। এটা তারই একটি দৃষ্টাস্ত। মাত্র কয়েক দশক পরে জ্যোতির্বিজ্ঞানী স্যার উইলিয়াম হারশেল (Sir William Herschel) বিরাট সংখ্যক তারকার অবস্থান এবং দূরত্ব খুব পরিশ্রমের সঙ্গে তালিকাভুক্ত করে তাঁর এই চিন্তাধারার সভাতা প্রমাণ করেছিলেন। তবুও এই ধারণা সম্পূর্ণভাবে যেনে নেওয়া হয় শুধুমাত্র এই শতাব্দীর প্রথমে।

মহাবিশ্ব সম্পর্কিত আমাদের আধুনিক মানস চিত্রের (picture) শুরু ১৯২৪ সালে। তখন আমেরিকান জ্যোতির্বিজ্ঞানী এড়ুইন হাবল (Edwin Hubble) দেখিয়েছিলেন আমাদের ছায়াপথই একমাত্র ছায়াপথ নয়। আসলে রয়েছে আরো বহু ছায়াপথ এবং তাদের মধাবতী বিরাট বিরাট শুন্যস্থান। এটা প্রমাণ করার জন্য তাঁর প্রয়োজন ছিল এই ছায়াপথগুলির দূরত্ব নির্ধারণ। সেগুলি এত দূরে অবস্থিত যে তাদের সতিাই স্থিব বলে মনে হয়। এ ঝাপারে নিকটস্থ তারকাগুলির সঙ্গে তাদের বৈসাদৃশ্য রয়েছে। হাবল (Hubble) সেই কারণে দূরত্ত্ব মাপবার জন্য পরোক্ষ পদ্ধতি বাবহার করতে বাধ্য হয়েছিলেন। একটি তারকার আপাতনৃষ্ট উল্ফুলতা দৃটি কারণের উপরে নির্ভর করে। কতটা আলোক এর থেকে বিদ্ধরিত হচ্ছে (ভারকাটির জ্যোতি- its luminosity) এবং আমাদের কাছ থেকে তারকাটি কত দূবে অবস্থিত। নিকটস্থ ভারকপ্রিলির ক্ষেত্রে আমরা তাদের দৃশ্যমান (apparent) ঔত্ত্বলা এবং দূরত্ব মাপতে পারি। সূতরাং আমরা হিসাব করে তাদেব জ্যোতিও বার করতে পারি। আবার উপ্টো দিক খেকে বলা যায়: অন্য ছায়াপথগুলির জ্যোতি যদি আঘাদের জানা থাকে তাহলৈ দুশামান ঔচ্ছলা মেশে আমরা তাদের দুরত্ব হিসাব করতে পারি। হাবল (Hubble) দেখেছিলেন, কোনো কোনো ধরনের (certain types) তারকার নৈকটা যখন এমন যে সেটা মাপা সম্ভব, তখন দেখা যায় যে তাদের জ্যোতি সব সময় একই থাকে। তাঁর যুক্তি: আমরা বদি অন্য ছায়াশখেও ঐ রকম তারকা দেখতে পাই তাহলে আমরা অনুমান কবতে পারি তাদের জ্যোতিও এক। সূতরাং সেই ছায়াপথের দূরত্ব গণনা করা সম্ভব। একই ছায়াপথে যদি আমরা অনেকগুলি তারকার ক্ষেত্রে এরকম করতে পারি এবং আমাদের গণনায় যদি সবসময় দূরত্ব একই হয়, তাহলে আমরা আমানের অনুমানের সত্যতা সম্পর্কে যথেষ্ট নিশ্চিত হতে পারি।

অতুইন হাবল (Edwin Hubble) নয়টি বিভিন্ন হায়াপথের দূরত্ব এইভাবে নির্পন্ন করেছিলেন। এখন আমরা জানি আধুনিক দূরবীঞ্চল যয়ে দৃশ্যমান প্রায় এক লক্ষ মিলিয়ান হায়াপথের ভিতরে আমাদের হায়াপথ একটি। প্রতিটি হায়াপথে প্রায় এক লক্ষ মিলিয়ান তারকা থাকে। চিত্র—৩,১ একটি সর্লিল হায়াপথের। অন্য কোনো হায়াপথবাসী কেউ যদি আমাদের হায়াপথ দেখেন, মনে হয় তাঁদের কাছে আমাদের হায়াপথ ঐ রকমই দেখাবে। আমরা এমন একটি হায়াপথে থাকি যেটা আড়াআড়ি মাপে (across) প্রায় এক লক্ষ আলোকবর্ষ হবে। আমাদের হায়াপথটি বীর গতিতে ঘূর্ণায়মান। এর সর্লিল বাহ্গুলিতে অবস্থিত তারকাগুলি প্রায় কয়েকশা মিলিয়ান বছরে একবার কয়ে কেন্দ্রকে প্রদক্ষিণ করে। আমাদের সূর্য একটি অতি সাধারণ হলুদ তারকা। এর আকার তারকাগুলির গড় আকারের মতোই। এর অবস্থান সর্লিল বাহগুলির একটির ভিতর দিককার কিনারায়। আরিটোটল এবং টোলেমীর

চিত্র - ৩.১

সময় আমরা ভাবতাম পৃথিবী মহাবিশ্বের কেন্দ্র। নিশ্চয়ই আমরা সেই সময় থেকে অনেক দূরে চলে এসেছিঃ

তারকাগুলি আমাদের কাছ থেকে এত দ্রে যে আমাদের কাছে সেগুলিকে এক একটি ক্ষুদ্র আলোক বিন্দুর মতো দেখায়। আমাদের পক্ষে তাদের আকার এবং গঠন দেখা সম্ভব নয়। তা হলে আমরা বিভিন্ন ধরনের তারকাকে কি করে পৃথক করি ? তারকাগুলির বিরাট সংখ্যাপ্তরু অংশের শুধু একটি মাত্র গঠনবৈশিষ্ট্য আমরা পর্যক্ষেণ করতে পারি। সেটা হল : তাদের আলোকের রঙা। নিউটন আবিষ্কার করেছিলেন সূর্যের আলোক যদি একটি কাঁচের প্রিজমের (ত্রিগার্ম্ব কাঁচ) ভিতর দিয়ে যায়, তা হলে আলোক তার উপাদানের বিভিন্ন রঙে ভেঙে যাবে। ঠিক যেমন হয় রামধনুতে (spectrum— আলোকের বর্ণালী)। দূরবীক্ষণ (Telescope) যদি একটি তারকা কিয়া ছায়াপথের দিকে নিশানা করা যায় তাহলে ঐ রক্ম ভাবেই একটা তারকা কিয়া হায়াপথের আলোকের বর্ণালী পর্যক্ষেণ করা সম্ভব। বিভিন্ন তারকার বর্ণালী বিভিন্ন। কিয় একটি বস্ত্রপিণ্ড উত্তাপে লোহিত বর্ণ হয়ে যখন দীপ্ত হয়,

তা নির্ভুনভাবে নির্ণয় করতে পারি।

তখন তা পৈকে বিচ্ছুরিত আলোকে যে রকম আশা করা যায় বিভিন্ন রম্ভের আশেক্ষিত নি ি । বি তি তি প্রান্থিয়ান মহাবিধ উজ্জ্বাও নির্ভূলভাবে সেই রকম (আসলে যে কোনো অশ্বছ বস্ত যখন উত্তপ্ত লোহিতবর্গ সম্পর্ককে বলা হয় বিশ্ব কির্দাল, তথান তার একটি বিশিষ্ট বর্ণালী থাকে। সে বর্ণালী শুধুমাত্র তার তাপমাত্রার সম্পর্ককে বলা হয় বিশ্ব করার নির্ভরণীল, অর্থাৎ তাপ-বর্ণালী। এর অর্থ একটি তারকার আলোকের বর্ণালী দেখে আমরা তার তাপমাত্রা বলতে পারি)। তা ছাড়া আমরা দেখতে পাই কয়েকটি অতান্ত বিশিষ্ট কাছে এগিয়ে আসে বাদ্ধ করা তারকান্তলির বর্ণালীতে অনুপন্থিত। এই অনুপন্থিত রঙগুলি এক একটা তারকায় এক কর্ম হতে পারে। আমরা জানি প্রতিটি মৌলিক রাসায়নিক পদার্থ কয়েকটি অতান্ত বিশিষ্ট কাড়িয় ক্রিটি মাণবার করে। তারকার বর্ণালীতে যে রঙগুলি অনুপন্থিত,

তার সঙ্গে এই রঙগুলি মেলালে আমরা তারকার পরিমণ্ডলে কি কি মৌলিক উপাদান রয়েছে.

১৯২০ সালে যখন জ্যোতির্বিজ্ঞানীরা অন্য ছায়াপথের ভারকাশুলি পর্যবেক্ষণ করতে শুরু করেন, তখন তাঁরা অতি অন্তত একটা জিনিষ দেখতে পান। আমাদের নিজেদের ছায়াপথের ভারকাগুলির ক্ষেত্রে যে রঙের কেতা (set) অনুপস্থিত, অন্য ছায়ালাথের ক্ষেত্রেও সেই বিশিষ্ট রঙের কেতা অনুপঞ্জিত। কিন্তু তাদের সব কটি ক্ষেত্রেই রঙগুলি বর্ণালীর লোহিত প্রান্তের দিকে বিচ্যুত এবং সেই বিচ্যুতির পরিমাণ একই। এই তথ্যের ফলফ্রতি বৃকতে হলে আমাদের প্রথম বুখতে হবে ডপুলার অভিক্রিয়া (Doppler effect) । আমরা দেখেছি দুধামান আলোক, বিদ্যুৎ টৌশ্বক ক্ষেত্রের অস্থিরতা (Buctuation) বা তরঙ্গ। আলোকের ম্পদ্যান্ধ (frequency অর্থাৎ সৈকেও প্রতি তরজের সংখ্যা) যুব বেশী-ক্রেকেণ্ডে নার থেকে সাত লক্ষ মিলিয়ান খিলিয়ান। মানুষের চোধে যা বিভিন্ন বর্ণ বলে প্রতিভাত হয় সেগুলি হল আলোকের বিভিন্ন স্পন্দান্ধ (frequency)। সর্বনিয়া স্প্রদান্ত চেখা যাও বর্ণালীর লালের নিকে-**এবং সর্বোচ্চ স্পদ্দান্ত থাকে নীলের দিকে।** এবার কল্পনা করা যাত অন্যাদের কাছ থেকে শ্বির দুরত্বে অবস্থিত ভারকার মতো একটি জালোকের উৎস এবং করনো ধরা যাক সেখান থেকে একটি খির স্পন্দান্ত বিশিষ্ট আলোক উৎসারিত হড়েং: স্পষ্টতই যে তরত্ব আত্রো পাই তার স্পন্দান্ত এবং সেই তরঙ্গঞ্জি যখন উৎসারিত হঙ্গে, সেওলির ওখনকার স্পন্দান্ত-এই দৃটি হবে অভিন্ন (ছায়াপথের মহাকর্ষীয় ক্ষেত্র উল্লেখযোগ্য ক্রিয়া হওয়ার মতো শতিলালী হবে না)। অনুমান করা যাক, উৎপটি আমাদের অভিমুখে চনতে শুভু করেছে। উৎপটি যখন পরবর্তী তরঞ্গীর্ধ পাঠাবে, তখন সেটি হবে আমাদের নিকটতর। সূতরাং ভবঙ্গশীর্ষের আমাদের কাছে গোঁছাতে যে পরিমাণ সময় সাগবে, সেটা উৎস যখন দ্বির ছিল, তখন যে সময় লাগত তার চাইতে কম। অর্থাৎ দৃটি তরগুশীর্শের মধারতী সময় হলে স্বভতর। সুভরাং প্রতি সেক্টেড আয়াদের কাছে যে তরন্দ শৌছাবে (অর্থাৎ শাদারু) ধার সংখ্যাটাও জারকার স্থিত অবস্থার তুলনায় বেণী হবে। অনুরূপভাবে উৎস ধনি আলাদের কাছ েত্ত নৃত্যে অপাস্যযান হয়, তাহলে আমাদের কাছে যে তরক্তানি সৌহাকে তার কালাভ হবে ক্রতর। সুতরাং আলোকের ক্ষেত্রে আমাদের কাছ থেকে দূরে অপস্থমান ভারভান্তলি থেকে নির্গত আলোক বর্ণালীর লাল প্রাপ্ত অভিযুদে বিচ্বাত হবে (লাল বিচ্বাতি) এবং আয়াদের অভিযুদে বারা চলমান তানের বর্ণালীতে থাকরে নীল অভিমূখে বিচ্যুটি। স্পান্যত্ত এবং ফ্রন্টির ভিতরে এই

সম্পর্ককে বলা হয় ডগ্লার অভিক্রিয়া (Doppler effect) । তবে এ অভিক্রিয়া কিন্তু আমাদের দৈনন্দিন অভিজ্ঞতার অংশ। রাস্তা দিয়ে চলমান একটি গাড়ীর শব্দ শুনুন : গাড়ীটা যখন কাছে এগিয়ে আসে তখন তার ইঞ্জিনের শব্দের তীক্ষতা তীব্রতর হয় (শব্দ উচ্চতর ম্পন্দাঙ্কের অনুরূপ) এবং গাড়ীটি যখন কাছে এসে মৃত্রে অপসরণ করে তখন তার শব্দের তীক্ষতা নিম্নতর হয়। বেতার তরঙ্গ কিন্তা আলোক তরঙ্গেরও আচরণ এক রকম। আসলে পুলিশ গাড়ীর দ্রুতি মাপবার জনা ডগ্লার অভিক্রিয়া ব্যবহার করে। শদ্ধতিটা হল গাড়ী থেকে প্রতিফলিত বেতার তরঙ্গের ছাতের (pulse) ম্পন্দান্ক মাপা।

অন্যান্য ছায়াপথের অক্তিই প্রমাণিত করার পরের বছরগুলিতে হাবল্ (Hubble) তাঁর সময় বায় করেছেন ছায়াপথগুলির দ্রত্বের তালিকা প্রস্তুত করে এবং তাদের বর্ণালী পর্যবেক্ষণ করে। সেই সময় অধিকাংশ সোক্ষেরই আশা ছিল ছায়াপথগুলি বেশ এলোমেলোভাবে চলমান। সূতরাং আশা ছিল নীল বিচ্নুতি এবং লাল বিচ্নুতির সংখ্যা সমান সমান হবে। কিছু যখন তাঁরা দেখলেন, অধিকাংশ ছায়াপথেই লাল বিচ্নুতি রয়েছে, অর্থাং সবগুলিই আমাদের কাছ খেকে দ্রে অপসরণ করছে, ভখন তাঁরা রীতিমতো বিশ্বিত হয়েছিলেন। কিছু আরো বিশ্বিত হওয়ার কারণ ছিল: ১৯২৯ সালে হাবলের প্রকাশিত আর একটি পর্যবেক্ষণ ফল। ছায়াপথগুলির লাল বিচ্নুতির পরিমাণও এলোমেলো নয়। এই বিচ্নুতি আর আমাদের কাছ থেকে ছায়াপথের দূরত্ব সমানুপাতিক (directly proportional) অর্থাং অন্য কথায় ছায়াপথটি যত দ্রে, তার দ্রাপসরণের গতিও তত বেশী। এর অর্থ হল, মহাবিশ্ব ছিতাবন্ধায় নেই। আগেকার দিনে সবাই ভাবত মহাবিশ্ব ছিতাবন্ধাতেই রয়েছে। কিছু মহাবিশ্ব আসলে প্রসারমান। ছায়াপথগুলির অন্তর্বতী দূরত্ব সব সময়ই বেড়ে চলেছে।

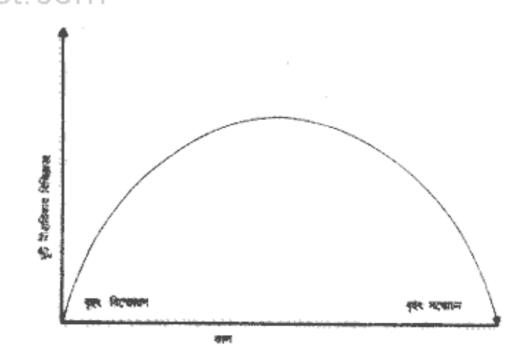
মহাবিশ্ব প্রসারমান এই আবিষ্কার বিংশ শতাব্দীর বৃহত্তম বৌদ্ধিক বিপ্লবগুলির জন্যতম। পশ্চাদৃদৃষ্টি দিয়ে (আবিকার হয়ে যাওয়ার পর) আমরা অবাক হয়ে ভাবতে পারি এর আগে কেন্দ্র কেউ এমনটা ভাবে 🚉 নিউটন এবং অন্যদের বোঝা উচিত ছিল, স্থির বিশ্ব অচিরে মহাকর্ষের প্রভাবে সঙ্চিত হতে শুরু করবে। কিছু তার কলে অনুমান করা যাক মহাবিশ্ব প্রসারমান। এই প্রসারণ যদি যথেষ্ট ক্লথ গতিতে হয় তাহলে শেষ পর্যন্ত মহাক্ষীয় বল প্রসারণ বন্ধ করবে এবং তারপর শুরু হবে সন্ধোচন। কিছু এ প্রসারণ যদি একটি বিশেষ ক্রান্তিক হারের (critical rate) চাইতে বেশী হয় তা হলে মহাকবীয় বল এমন শক্তিলালী হবে না যে প্রসারণ বন্ধ করতে পারে এবং মহাবিশ্ব চিরকাল প্রসারণশীলই থাকবে। ভূপুষ্ঠ থেকে ঞ্জটি একেট (হাউই) ছাড়লে যা হয় ব্যাপারটা অনেকটা সেই রকম হবে। রকেটের গতি যদি যথেষ্ট ধীর হয়, তা হলে মহাকর্ষ শেষ পর্যন্ত রকেটটাকে থামিয়ে দেবে এবং তারপর রকেটটি পড়তে থাকবে। অনাদিকে রকেটের গতি যদি একটি ক্রান্তিক ফ্রন্ডির (critical speed) বেশী হয় (সেকেণ্ডে প্রায় সাত মাইল) তাহলে মহাক্ষীয় শক্তির তাকে ফিরিয়ে আনার ক্ষমতা থাকবে না। সূতরাং রকেটটি অনস্তকাল খরে পৃথিবী থেকে দূরে অপসরণ করবে। উনবিংশ শতাব্দীতে কিয়া অষ্টাদশ শতাব্দীতে এমন কি সপ্তদল শতাব্দীর শেষ দিকেও মহাবিশ্বের এই আচরণ সম্পর্কে নিউটনের মহাক্ষীয় তত্ত্বের ডিন্তিতে ভবিষাদ্বাদী করা যেত। অবচ শ্বির মহাবিশ্ব সম্পর্কে বিশ্বাস এতই দৃঢ় ছিল যে, বিংশ শতাব্দীর প্রথম দিকটা পর্যন্ত সে বিশ্বাস

টিকৈ বছল। এমন কি ১৯১৫ সালে আইনস্টাইন যখন ব্যাপক অপেক্ষরীন ইটন ক্রিনির ভিষমও পৃথিবীর স্থিবত্ব সম্পর্ক তিনি এত নিশ্চিত ছিলেন যে তিনি এ স্থিবত্ব সম্ভব করার জন্য তাঁর সমীকরণে একটি তথাকথিত সৃষ্টিতান্ত্বিক ধ্রুবক (cosmological constant) ব্যবহার করেছিলেন। তিনি নতুন একটি মহাকর্ষ বিরোধী বল (anti-gravity) উপস্থাপন করেছিলেন। এ বলের জন্যানা বলের মতো কোনো বিশেষ উৎস ছিল না। এ বল তৈরী ছিল স্থান-কালের গঠনের ভিতরেই। তিনি মনে করতেন, স্থান-কালের ভিতরে একটি অন্তর্নিহিত (inbuilt) প্রসারণ প্রবণতা রয়েছে এবং এ প্রবণতাকে মহাবিশ্বের সমস্ত পদার্থের মহাক্ষীয় বল মিলে নাকচ করে নির্ভুল তারসামা সৃষ্টি করে। এর ফলপ্রুতি সৃথির বিশ্ব। মনে হয় শুধু একজনই ব্যাপক অপেক্ষবাদকে তার অভিহিত মূল্যে (face value) গ্রহণ করতে ইচ্ছুক ছিলেন। আইনস্টাইন এবং অন্যানা পদার্থবিদরা যখন ব্যাপক অপেক্ষবাদের অস্থিরবিশ্ব সম্পর্কীয় ভবিষাদ্বাণী এড়িয়ে যাওয়ার উপায় শুরুছিলেন, তখন রুল পদার্থবিদ এবং গণিতবিদ আন্তেকজ্বান্তার ফ্রিডমাান চেষ্টা করেছেন ব্যাপারটা ব্যাখ্যা করার।

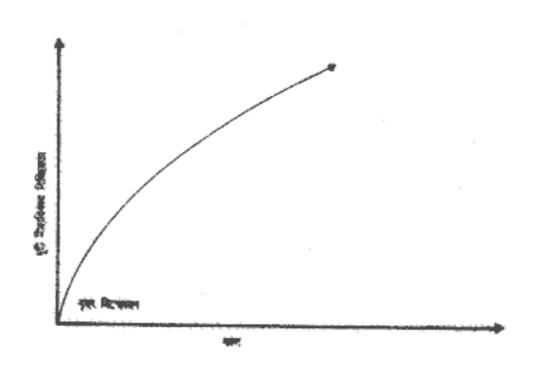
ফ্রিডমানে মহাবিশ্ব সম্পর্কে দৃটি সহজ সরল অনুমান করেছিলেন: আমরা যেদিকেই
দৃষ্টিপাত করি না কেন মহাবিশ্বের রূপ একই রুকম দেখায় এবং আমরা যদি মহাবিশ্বকে অনা
কোনো স্থান থেকে পর্যবেক্ষণ করি, তাহলে মহাবিশ্বকে একই রুকম দেখাবে। শুধুমাত্র এই
দুটি অনুমান থেকেই ফ্রিডমান দেখিয়েছিলেন মহাবিশ্বকে স্থির মনে করা আমাদের উচিত
নয়। আসলে এডুইন হাবলের আবিষ্কারের কয়েক বছর আগে ১৯২২ সালে ফ্রিডমান হাবলের
যে আবিষ্কার সেটাই নির্ভুলভাবে বলেছিলেন। এটা ছিল ফ্রিডমানের ভবিষাত্বাণী।

সমস্ত অভিমুখেই মহাবিশ্ব দেখতে এক রকম এ অনুমান বাস্তবে স্পষ্টতই সতা নয়।
উদাহরণ: আমরা দেখেছি আমাদের নীহারিকার অন্যান্য তারাগুলি আকালে একটি স্পষ্ট
আলোক বন্ধনী (band of light) সৃষ্টি করে। এর নাম ছায়াপথ। কিন্তু আমরা যদি দূরের
নীহারিকাগুলির দিকে দৃষ্টিপাত করি, তাহলে মনে হবে তাদের তারকাগুলির সংখ্যা প্রায়
একই।মহাবিশ্বকৈ সব অভিমুখেই মোটামুটি এক রকম দেখায়। অবশা আমরা যদি নীহারিকাগুলির
অন্তর্বতী দূরত্বের সঙ্গে তুলনীয় বিরাট মাত্রায় পর্যবেক্ষণ করি এবং স্বল্প মাত্রায় পর্যবেক্ষণে
যো পার্থক্য দেখা যায় তাকে যদি অগ্রাহ্য করি তা হলেই এ তথ্য সতা। অনেক দিন পর্যপ্ত
ফ্রিডম্যানের অনুমানের সপক্ষে এই যুক্তিই ছিল যথেই। এটা ছিল বাস্তব মহাবিশ্বের মোটামুটি
একটা আসল্ল কপ কিন্তু আরো আধুনিক কালে একটি আক্ষিক শুভ ঘটনায় ফ্রিডম্যানের
অনুমান যে মহাবিশ্ব সম্পর্কীয় উল্লেখযোগ্য নির্ভুল বিবরণ—সেই তথ্য আবিদ্ধৃত হল।

১৯৬৫ সালে আর্ণো পেঞ্জিয়াস্ (Arno Penzias) এবং ববার্ট উইলসন (Robert Wilson) নামে দুজন আমেরিকান পদার্থবিদ নিউ জার্সির বেল টেলিফোন ল্যাবরেটরীছে দুটি অতান্ত স্পর্শকাতর অণুতরঙ্গ (microwave) অভিজ্ঞাপক যন্ত্র (detector) পরীক্ষা করছিলেন (অণুতরঙ্গগুলি আলোক তরন্থেরই মতো, তবে তানের স্পন্দান্ত সেকেণ্ডে মাত্র দশ হাজার মিলিয়ান)। পেঞ্জিয়াস এবং উইলসন দেখলেন, তাঁদের যদ্ভে যে পরিমাণ গোলমাল (শব্দ) ধরা পড়া উচিত তার চাইতে বেশী গোলমাল ধরা পড়ছে। ওঁরা চিন্তিত হলেন। গোলমাল (noise) কোনো বিশেষ অভিমুখ থেকে আসহিল বলে মনে হয়নি। প্রথমে তাঁরা তাঁদের গ্রাহক্যয়ে

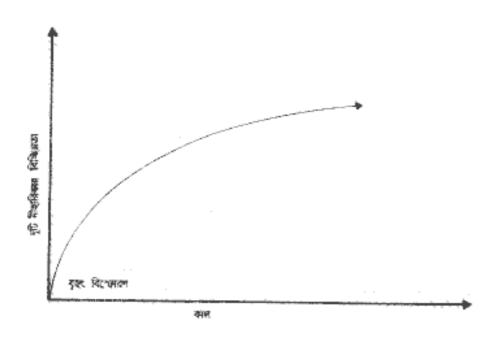

কিছু শাখির মল পেলেন। তখন তাঁরা খুঁজতে লাগলেন যশ্তের বিকৃতির অন্য কোনো সম্ভাব্য কারণ। পরে সে সম্ভাবনাও দেখা গেল না। তাঁরা জানতেন, গ্রাহ্কযন্ত্র যখন সোজাসুজি উপর অভিমুখী তার তুলনায় যখন সে রকম নয়, তখনই পরিমণ্ডলের যে কোনো গোলযোগ বেশী শক্তিশালী হয়। তার কারণ আলোক রশ্মি যখন সোজাসুদ্ধি উপর দিক থেকে গৃহীত হয়, তখনকার তুলনায় যখন দিক্চক্রবাল(horizon) থেকে গৃহীত হয় তখন তাকে পরিমণ্ডলের অনৈক বেশী অংশ অতিক্রম করতে হয়। অভিজ্ঞাপক যন্ত্রের অভিমুখ যাই হোক না কেন, বাড়তি গোলযোগটা একই থাকে ৷ সূতরাং এ গোলযোগ অবশাই পরিমণ্ডলের বাইরে থেকে আগন্ত। সারা বছর, দিনরাত এই গোলযোগ একই রকম। অথচ পৃথিবী তাব অক্ষে ঘুরছে এবং সূর্যকে প্রদক্ষিণ করছে। এ থেকে বোঝা গিয়েছিল এই বিকিরণ আসছে সৌরমশুলের বাইরে থেকে, এমন কি, নীহারিকারও বাইরে থেকে। তাছাড়া পৃথিবীর গতির সঙ্গে অভিজ্ঞাপক যদ্রের অভিমূখের পরিবর্তনের ফলে এই গোলযোগেরও পরিবর্তন হোত। আসলে আমরা জানি এই বিক্রিবণ পর্যবেক্ষণযোগ্য মহাবিশ্বের অধিকাংশ অতিক্রম করে আমাদের কাছে এসে শৌহৈছে। যেহেতু, সব অভিমুখেই এটা অভিন্ন সেইজনা মহাবিশ্বও সবদিকে এক রকম। অবশা যদি শুধুমাত্র বৃহৎ মানে (large scale) বিচার করা হয়। এখন আমরা জানি, আমরা যে অভিমুখেই অনুসন্ধান করি না কেন, গোলযোগের পরিমাণের যে পরিবর্তন হয়, সেটা দশ হাজার ভাগের এক ভাগের বেশী নয়। সুতরাং পেঞ্জিয়াস্ এবং উইলসন ফ্রিডম্যানের প্রথম অনুমানের নির্ভুল সত্যতার একটা উল্লেখযোগ্য প্রমাণ আবিষ্কার করেছিলেন। অথচ, এ আবিষ্কার করার উদ্দেশ্য তাঁর ছিল না।

প্রায় একই সময়ে নিকটবর্তী প্রিন্সটন বিশ্ববিদ্যালয়ের দুজন পদার্থবিজ্ঞানী বব্ ডিক্
(Bob Dicke) এবং জিম্ পিব্লস্ (Jim Peebles) অণ্ডরঙ্গ নিয়ে কাজ করছিলেন। তাঁরা
জর্জ গ্যামোর (George Gamow) [জর্জ গ্যামো একসময় আলেকজাণ্ডার ফ্রিডমানের
(Alexander Friedmann) খাত্রছিলেন] একটি প্রকল্প (suggestion) নিয়ে কাজ করছিলেন।
প্রকল্পটি হল, মহাবিশ্বের আদিম অবস্থায় খুবই ঘন এবং উত্তপ্ত হওয়া উচিত, হওয়া উচিত
তাশনীপ্র এবং উত্তাপে সাদা। ডিক্ এবং পিব্লুসের যুক্তি ছিল আদিম মহাবিশ্বের দীপ্তি এখনও
আমাদের দেখতে পাওয়া উচিত। তার কারণ, মহাবিশ্বের বহু দূরবর্তী অংল থেকে আলোক
আমাদের কাছে মাত্র বর্তমান কালেই এসে পৌছাছে। কিন্তু মহাবিশ্বের প্রসারের অর্থ, এই
আলোকেরও এত বেদ্যী লাল বিচ্নাতি হবে যে আমাদের কাছে সেগুলিকে দেখাবে অণ্ডরঙ্গ
বিকিরণের মতো। ডিক্ এবং পিব্লু বিকিরণ অনুসন্ধান করবার জন্য প্রস্তত হচ্ছিলেন। পেঞ্জিয়াস্
এবং উইলসন ওঁদের গবেষণার সংবাদ পেয়ে বুবতে পারলেন তাঁরা নিজেরা এটা আগেই
আবিদ্ধার করেছেন। পেঞ্জিয়াস্ এবং উইলসন এজনা ১৯৭৮ সালে নোবেল পুরস্কার পান
(মনে হয় ডিক্ ও পিব্ল এর জনা দুঃখ পেয়েছিলেন, গ্যামোর কথা না ইয় নাই বলা হল)।


আমরা যে অতিমুখে লক্ষ্য করি না কেন মহাবিশ্ব একই রকম দেখায় এ সম্পর্কে সাক্ষ্য প্রমাণগুলি প্রথমে দেখলে মনে হতে শারে মহাবিশ্বের যে অংশে আমরা বসবাস করি, তার নিশ্চয়ই একটা বিশেষ গুরুত্ব আছে। বিশেষ করে, সমস্ত নীহারিকাগুলিকে যদি আমাদের ক্ষান্থ থেকে দূরে অপসরণ করছে বলে দেখতে পাই, তা হলে মনে হতে পারে, আমরা

মিশ্চয়ই মহাবিশ্বের কেন্দ্রে অবস্থান করছি। এর কিছু একটা বিকল্প ব্যাখ্যাও রয়েছে। যে কোনো নীহারিকা থেকে দেখলে প্রতিটি অভিমুখে মহাবিশ্বকে একই রকম দেখাতে পারে। আমরা দেখেছি এটা ছিল ফ্রিডমানের (Friedmann) দ্বিতীয় অনুমান। এই অনুমানের সপক্ষে কিম্বা বিশক্ষে কোনো বৈজ্ঞানিক প্রমাণ আমাদের নেই। শুধুমাত্র বিনয়ের জনাই আমরা এ তত্ত্বে বিশ্বাস করি: আমাদের সব দিকেই যদি মহাবিশ্বকে একই রকম দেখায়া, কিন্তু মহাবিশ্বের অনা কোনো জায়গা থেকে সে রকম না দেখায়, তা হলে ব্যাপারটা খুবই বৈশিষ্টাপূর্ণ হোত। ফ্রিডম্যানের প্রতিরূপ বলে, প্রতিটি নীহারিকাই প্রতাক্ষভাবে পরস্পরের কাছ থেকে দুরে সরে যাছে: পরিস্থিতি অনেকটা একটা বেলুনের মতো। বেলুনটার কয়েকটা বিন্দুতে রঙ লাগানো আছে এবং বেগুনটা অবিরাম ফোলানো হচ্ছে। বেগুনটা ফোলার সঙ্গে সঞ্জে যে কোনো দৃটি বিন্দুর অন্তর্বতী দূরত্ব বাড়ে, কিছু কোনো বিন্দুকেই প্রসারণের কেন্দ্র বলা যায় না। তাছাড়া, বিন্দুগুলির দূরত্ব যত বাড়বে, তারা তত ডাড়াতাড়ি পরস্পর থেকে দূরে সরে যাবে। একইভাবে ফ্রিডম্যানের প্রতিরূপে দৃটি মীহারিকার পরস্পর থেকে দুরাপসারণের দ্রুতি তানের অন্তর্বতী দূরত্বের আনুপাতিক। সুতরাং এ থেকে ভবিষ্যদ্বাণী পাওয়া গিয়েছিল: একটি নীহারিকার লাল বিচ্যুতি আমাদের কাছ থেকে তার দূরত্বের সঙ্গে সমানুপাতিক (directly proportional)। হাবন্ যা আবিষ্কার করেছিলেন, এ তথ্য তার সঙ্গে নিখুঁতভাবে মেলে। এই প্রতিরূপ সাফলালাভ করেছিল এবং তিনি হাবলের পর্যবেক্ষণ সম্পর্কে ভবিষাদ্বাণীও করেছিলেন। কিছ্ক তবুও মহাবিশ্বের সমরূপ প্রসারণ সম্পর্কে হাবলের আবিষ্কারে সাজা দিয়ে আমেরিকান পদার্থবিদ হাওয়ার্ভ রবার্টসন (Howard Robertson) এবং ব্রিটিশ গণিতবিদ আর্থার ওয়াকার (Arthur Walker) ১৯৩৫ সালে সদৃশ প্রতিরূপ আবিষ্কার মা করা পর্যন্ত পাশ্চাতা দেশে ফ্রিডম্যানের গবেষণা বেশীর ভাগ ক্ষেত্রেই অজ্ঞানা ছিল।

ফ্রিডমান একটি প্রতিরূপই আবিষ্কার করেছিলেন। কিন্তু আসলে তাঁর দুটি মূলগত অনুমান মেনে চলার মতো তিনটি ভিন্ন ভিন্ন ধরনের প্রতিরূপ রয়েছে। প্রথমটিতে (এটা আবিষ্কার করেছিলেন ফ্রিডমান) মহাবিশ্ব যথেষ্ট ধীরভাবে প্রসারমান এবং বিভিন্ন নীহারিকার পরম্পরের প্রতি মহাকর্মীয় আকর্মণের দক্তন প্রসারহান ধীরতর হবে এবং শেষ পর্যন্ত বন্ধ হয়ে যাবে। নীহারিকাগুলি তারপর পরম্পরের অভিমূখে যেতে থাকে এবং মহাবিশ্ব সম্পুটিত হয়। চিত্র ৩.২ তে (পৃ...৬১) দেখা যাঙ্গেহ, সময় বাড়ার সঙ্গে প্রতিবেশী দুটি নীহারিকার অন্তর্বতী দ্বত্বের কি রকম পরিবর্তন হয়। শুরু হয় শূনো (০), বৃদ্ধি পেয়ে সর্বোচ্চ মাত্রায় শৌহায়, তারপর আবার শূনো নেমে যায়। দ্বিভীয় ধরনের সমাধানে মহাবিশ্ব এত ক্রুত প্রসারমান যে মহাকর্ষীয় আকর্মণ কর্মনোই এ প্রসারণ বন্ধ করতে পারে না, তবে একটু ধীরতর করতে পারে। চিত্র ৩.৩-এ দেখা যাছে, এই প্রতিরূপে প্রতিবেশী নীহারিকাগুলির বিচ্ছিন্নভা (separation)। এটা শুরু হয় শূনা থেকে এবং শেষ পর্যন্ত নীহারিকাগুলি পরম্পর থেকে হির দ্রুতিতে দ্রাপসরণ করে। আর শেষে আছে তৃতীয় সমাধান। এই সমাধানে মহাবিশ্বর প্রসারণের গতি শুধুমাত্র যাতে আবার চুপুসে না যায়, সেই রকম। চিত্র ৩.৪-এ দেখানো



চিত্র- ৩.৩

banglainternet.

চিত্ৰ ৩.৪

হয়েছে এই ক্ষেত্রেও প্রসারণ শুরু হয় শূনো এবং চিরকাল বাড়তে থাকে। কিন্তু মীহারিকাগুলির পরস্পর থেকে দ্রাপসরণের দ্রুতি ক্রমশই কমতে থাকে তবে কখনোই একেবারে শূনো পৌঁছায় না।

ফ্রিডমানের প্রথম ধরনের প্রতিরূপের একটা উল্লেখযোগ্য অবয়ব হল: মহাবিশ্ব স্থানে অসীম নয়, কিন্তু স্থানেরও কোনো সীমারেখা (boundary) নেই। মহাকর্ম এত শক্তিশালী যে স্থান নিজেই নিজের উপরে গোল হয়ে বেঁকে যায় (is bent)। ফলে এটা হয় অনেকটা ভূপৃষ্ঠের মতো। ভূপৃষ্ঠে বিশেষ অভিমুখে গমন করলে কেউই অলজ্যনীয় বাধার মুখামুখি হয় না কিন্তা কিনারা থেকে পড়ে যায় না, বরং শেষ পর্যন্ত যেখান থেকে রওনা হয়েছিল, সেখানেই ফিরে আসে। ফ্রিডমানের প্রথম প্রতিরূপে স্থান ঠিক এই রকম। তবে ভূপৃষ্ঠের দুটি মাত্রার বদলে স্থানের রয়েছে তিনটি মাত্রা। চতুর্থ মাত্রা কালও বিস্তৃতির দিক থেকে গীমিত। কিন্তু এটা দুটি প্রান্ত বা সীমানা সমন্থিত রেখার মতো—আদি এবং অন্ত। পরে আমরা দেখব ব্যাপক অপেক্ষবাদের সঙ্গে কণাবাদী বলবিদ্যার (quantum mechanics) সমন্ত্র্য় করলে স্থান এবং কাল হতে পারে সমীয় অথচ কোনো কিনারা কিন্তা সীমানা বিহীন।

গোটা মহাবিশ্ব পরিভ্রমণ করে যেখান থেকে যাত্রাশুক হয়েছিল, সেখানেই ফিরে আসা সম্ভব—এই ধারণা ভাল বৈজ্ঞানিক কল্পকথার ভিত্তি হতে পারে, কিন্তু এর বিশেষ কোনো ব্যবহারিক গুরুত্ব নেই। তার কারণ দেখানো যেতে পারে ভ্রমণ শেষ হওয়ার আগেই মহাবিশ্ব চুপ্সে যাবে এবং তার আয়তন শ্নো পৌঁছাবে। মহাবিশ্ব শেষ হয়ে যাওয়ার আগে, যেখান থেকে যাত্রা শুরু, সেখানে পৌঁছাতে হলে আলোকের চাইতে দ্রুতগতিতে চলতে হবে। সেটা অনুমোদনীয় নয়।

ফ্রিডম্যানের প্রতিরূপের প্রথম ধরনটায় মহাবিশ্ব প্রসারিত হয় আবার চুপসে যায়,
স্থান নিজের উপরেই বাঁকানো— অনেকটা ভূপৃষ্ঠের মতো। সূতরাং এ বিস্তার সীমিত। দ্বিতীয়
প্রতিরূপে মহাবিশ্ব চিরকাল প্রসারণশীল। স্থান ঘোড়ার জিনের (saddle) মতো অন্যদিকে
বাঁকানো। সূতরাং এ ক্ষেত্রে স্থান অসীম। সব চাইতে শেষেরটা অর্থাৎ ফ্রিডম্যানের তৃতীয়
প্রতিরূপে প্রসারণের হার শুধুমাত্র ক্রান্তিক (critical)। সূতরাং স্থান সমতল (অতএব অসীমও
বটে)।

কিন্তু ফ্রিডম্যানের কোন প্রতিরূপ আমাদের মহাবিশ্বের সঠিক বিবরণ? মহাবিশ্বের প্রসারণ কি বন্ধ হয়ে যাবে এবং আবার সন্থোচন শুরু হবে; নাকি চিরকাল প্রসারণ চলবে? এ প্রশ্নের উত্তর দিতে হলে আমাদের জানা দরকার মহাবিশ্বের প্রসারণের বর্তমান হার এবং তার বর্তমান গড় ঘনত্ব। ঘনত্ব যদি একটি বিশেষ ক্রান্তিক পরিমাণের চাইতে কম হয় (এটা স্থির করা হয় প্রসারণের হার থেকে), তাহলে মহাক্ষীয় আকর্ষণ প্রসারণ বন্ধ করার মতো শত্তিশালী হবে না। ঘনত্ব যদি ক্রান্তিক পরিমাণের চাইতে বেলী হয়, তাহলে ভবিষাতে কোনো এক সময় প্রসারণ বন্ধ হয়ে যাবে এবং মহাবিশ্ব আবার চুপ্সে যাবে।

ভপ্লার অভিক্রিয়ার (Doppler effect) ভিত্তিতে আমাদের কাছ থেকে নীহারিকাগুলি কত দ্রুত দূরাপসরণ করছে সেই গতিবেগ নির্ধারণ করে আমরা মহাবিশ্বের প্রসারণের বর্তমান হার বার করতে পারি। এটা খুব নির্ভুলভাবেই করা যায়। নীহারিকাগুলির দুরত্ব কিন্ত খুব ভালভাবে জানা নেই। তার কারণ আমরা শুধুমাত্র পরোক্ষভাবেই দূরত্ব মাপতে পারি। সুতরাং আমরা যেটুকু জানি, সেটা হল প্রতি হাজার মিলিয়ান বছরে মহাবিশ্ব শতকরা ৫ থেকে ১০ ভাগ হারে প্রসারিত হচ্ছে। কিন্তু বর্তমানে মহাবিশ্বের গড় ঘনত্ব সম্পর্কে আমাদের অনিশ্চয়তা আরো বেশী। আমরা যদি আমাদের নীহারিকা এবং অন্যান্য নীহারিকার দৃশ্যমান সমস্ত তারকাগুলির ভর যোগ করি, তা হলে যে যোগফল হয় সেটা মহাবিশ্বের প্রসারণ বন্ধ করার পক্ষে যেটা প্রয়োজন তার এক শতাংশের চাইতেও কম-এমন কি, আমরা যদি প্রসারণের হারের সর্বনিম্ন অনুমান গ্রহণ করি তা হলেও। আমাদের নীহারিকা এবং অন্যান্য নীহারিকায় কিন্তু কিছু অন্ধকারময় পদার্থ নিশ্চরাই আছে। সেগুলি আমরা প্রত্যক্ষতাবে দেখতে পারি না। কিন্তু নীহারিকাগুলির অন্যান্য তারকার কক্ষের উপর এগুলির মহাক্ষীয় আকর্ষণের প্রভাব থেকে আমরা জানতে পারি ঐগুলির অস্তিত্ব নিশ্চয়ই আছে। তাছাড়া অধিকাংশ নীহারিকাকেই গুল্ছবদ্ধ অবস্থায় দেখা যায়। নীহারিকাগুলির গতির উপর তাদের প্রতাব থেকে আমরা এই সমস্ত নীহারিকার অন্তর্বতীস্থানে আরো অন্ধকারময় পদার্থের অস্তিত্ব অনুমান করি। এই সমস্ত অন্ধকারময় পদার্থ যোগ দিলেও আমরা যা পাই সেটা প্রসারণ বন্ধ করার জন্য যা প্রয়োজন তার এক দশমাংশেরও কম। কিন্তু মহাবিশ্বের সর্বত্র প্রায় সমভাবে বশ্টিত অন্য কোনো পদার্থের অস্তিত্বের সম্ভাবনা আমরা অগ্রাহ্য করতে পারি না। হয়তো আমরা এখনো সেটা ধরতে পারি নি। সে পদার্থ হয়তো গড় ঘনতকে বাড়িয়ে এমন জায়গায় নিয়ে আসতে পারে, যা

প্রসারণ বন্ধ করার পক্ষে প্রয়োজনীয় ক্রান্তিক পরিমাণে পৌঁছাতে পারে। সেইজনা আপাড়াত যা সাজা প্রমাণ পাওয়া যায়, তা খেকে মনে হয়, মহাবিশ্ব চিরকালাই প্রসারমান থাকবে। কিন্তু আমরা নিশ্চিতভাবে যা বলতে পারি, সেটা হল, মহাবিশ্ব যদি চুপ্সে যায়ও, তা হলেও সেটা অন্ততপক্ষে আগামী দশ হাজার মিলিয়ান বছরের আগে হবে না। তার কারণ, অন্তত ২০ হাজার মিলিয়ান বছর ধরেই মহাবিশ্ব প্রসারমান রয়েছে। এ নিয়ে অনর্থক দুশ্চিন্তার কোনো কারণ নেই আমাদের। কারণ, আমরা যদি সৌর জগতের বাইরে কোথাও উপনিকেশ খাশন করতে না পারি, তা হলে তার বহু আগেই আমাদের সূর্য নিভে যাবে এবং তার সঙ্গে মনুষ্য জাতির মৃত্যু হবে!

ফ্রিডম্যানের সক্ষটি সমাধানেরই একটি দিক হল, কোনো এক অতীভকালে (অতীতে ১০ থেকে ২০ হাজার মিলিয়ান বছরের ভিতরে) প্রতিবেশী নীহারিকা**গুলির অস্তবর্তী** দুরত্ব নিশ্চমই ছিল শূনা। সেই কালকে আমরা বলি কৃহৎ বিশ্ফোরণ (big bang) । তখন মহাবিখের ঘনত্ব এবং স্থান-কালের বক্রতা ছিল অসীম। আসলে গণিতশাস্ত্র অসীম সংখ্যা নিয়ে (infinite number) কাজ করতে অক্ষয়। এর অর্থ হল, ব্যাশক অংশক্ষবাদের ভবিষাদ্বাণী (এটাই ফ্রিডম্যানের সমাধানের ভিত্তি) অনুসারে মহাবিশ্বের এমন একটা বিন্দু আছে যেখানে এই তত্ত্বটা ভেত্তে পড়ে। যাকে গণিতবিদরা অনন্যতা (singularity) বলেন এ রক্ষ একটি বিন্দু তারই এক উদাহরণ। আসলে আমাদের সমগ্র বৈজ্ঞানিক তত্ত্বই স্থান-কাল মসুণ এবং প্রায় সমতল (flat) এই অনুমানের ভিত্তিতে গঠিত। বৃহৎ বিশেষরণের অনন্যতার স্থান-কালের বক্রতা অসীয়। সূতরাং, সেখানে বৈজ্ঞানিক তত্ত্বগুলি ভেঙে পড়ে। এর অর্থ হল কৃহৎ বিক্যোরণের আগে যদি কোনো ঘটনা থেকেও থাকে, তা হলেও পরবর্তীকালে কি ঘটবে সেটা নির্ধারণ করার জন্য সে সমস্ত ঘটনা ব্যবহার করা সম্ভব নয়। তার কারণ, বৃহৎ বিশেষরণে এসে ভবিষাদ্বাণীর সম্ভাবনাও ভেঙে পড়ে। অনুরূপভাবে বলা যায়, আমরা যদি শুধুমাত্র জানি বৃহৎ বিস্ফোরণের পরে কি ঘটেছিল (ব্যাপারটা আসলে এই রক্ষই) তা হলেও আমরা তার আগে কি ঘটেছিল তা নির্ধারণ করতে পারি না। আগদের ক্লেত্রে কুশ্ৎ বিশেষারণের আগের ঘটনার কোনো ফলশ্রুতি থাকতে পারে না। সুতরাং মহাবিশ্বের বৈজ্ঞানিক প্রতিরূপের কোনো অংশ সে ঘটনাগুলি হতে পারে না। অভএব সেগুলিকে আমরা প্রতিক্রপ থেকে ছেঁটে ফেলব এবং আমরা বলব কালের একটা আরম্ভ ছিল।

কালের একটা আরম্ভ রয়েছে এই ধারণা অনেকেই গছন্দ করেন না। তার কারণ এতে ঐশ্বরিক হস্তক্ষেপের গধ্ব রয়েছে (অনানিকে ক্যাথলিক চার্চ এই বৃহৎ বিক্ষোরণ প্রতিরূপ গ্রহণ করে ১৯৫১ সালে সরকারীভাবে ঘোষণা করেন এর সঙ্গে বাইবেলের সঙ্গতি রয়েছে)। সূত্রাৎ বৃহৎ বিক্ষোরণ হয়েছিল এই সিদ্ধান্ত এড়ানোর জন্য অনেক প্রস্তাবই উপস্থিত করা হয়েছে। যে প্রস্তাবের সব চাইতে বেলী সমর্থন ছিল তার নাম বলা যেতে পারে স্থিরাকছাতত্ত্ব (steady state theory)। ১৯৪৮ সালের এই প্রস্তাবনা ছিল নাজি অধিকৃত আট্টুয়া থেকে পলাতক হারমানে বিভ (Herman Bondi) একং টমাস গোল্ড (Thomas Gold) এই দুজন প্রবং ফ্রেড হয়েল (Fred Hoyle) নামে একজন ব্রিটিশের। ফ্রেড হয়েল যুদ্ধের সময় এলের সঙ্গের রাডার বিকাশের জন্য করে করেছেন। চিন্তনটা ছিল: নীহারিকাগুলি যেমন পরশ্বর

থেকে দুরে সরে যায় অন্তর্বতী শূন্যস্থানে তেমনি অবিচ্ছিন্নভাবে নতুন নতুন নীহারিকার জন্ম হয়। নতুন পদার্থ সব সময়ই অবিচ্ছিন্নভাবে সৃষ্টি হচ্ছে এবং নীহারিকাগুলি তা থেকেই হুন্ম নিক্ষে। সুতরাং, সর্বকালে এবং স্থানে সর্ববিন্দু খেকে মহাবিদ্ধকে একই রক্তম দেখাবে। অবিচ্ছিত্র পদার্থ সৃষ্টি মেনে নিতে হলে স্থিরাবস্থাতত্ত্বের প্রয়োজন ছিল ব্যাপক অপেক্ষবাদের পরিবর্তন ৰুৱা। কিছু সৃষ্টির যে হার এর সঙ্গে জড়িত সেটা এত অল্প (প্রতি ঘন কিলোমিটারে বছরে একটি কণা) যে তার সঙ্গে বৈঞ্জানিক পরীক্ষার কোনো হন্দ ছিল না। আমরা যে অর্থে প্রথম অধায়ে বৈজ্ঞানিক ভব্বকে ভাল বলেছি সেই অর্থে এই তত্ত্বটি ভালই ছিল। অর্থাৎ ভত্ত্বটি ছিল সরল এবং এমন সুনিশ্চিত ভবিষ্যন্থাণী করতে সক্ষম যা পর্যবেঞ্চণের সাহায্যে প্রমাণ করতে পারা যায়। একটি ভবিষ্যদ্বাণী ছিল: স্থানের একটি নির্দিষ্ট আয়তনের ভিতরে নীহারিকা কিন্তা তার সমতুল্য বস্তুপিশুগুলির সংখ্যা সবসময় একই থাকবে। মহাবিশ্বের যে কোনো কালে এবং যে কোনো স্থানে পর্যবেক্ষণ করলৈও কোনো পরিবর্তন হবে না। ১৯৫০-এর দশকের শেষের দিকে এবং ১৯৬০-এর দশকের প্রথম দিকে বাইবিন্থ থেকে (outer space) আগত রেডিও তরন্বগুলির একটা জারিপ হয় (survey)। কাজটা হয়েছিল কেন্ত্রিজে, করেছিলেন মার্টিন রাইলের (Martin Ryle) (ইনিও যুদ্ধের সময় বণ্ডি, গোল্ড এবং হয়েলের সঙ্গে রাডার নিয়ে কান্ধ করেছেন) নেতৃত্বে একদল ভ্রোতির্বিজ্ঞানী। কেখ্রিজ-এর দলটি দেখিয়েছিলেন, এই সমস্ত রেডিও তরশ্বের অধিকাংশেরই উৎস অবশাই আমাদের নীহারিকার বাইরে (আসলে তরঙ্গের অনেকগুলিই অন্য নীহারিকার সঙ্গে জড়িত বলে বোঝা গিয়েছিল) এবং শক্তিশালী উৎসের তুলনায় দুর্বল উৎসের সংখ্যা ছিল অনেক বেশী। তাঁদের ব্যাখ্যা ছিল দুর্বল তরশ্বগুলির উৎস অনেক দূরে এবং সবল তরঙ্গগুলির উৎস নিকটে। তথন মনে হুয়েছিল স্থানের প্রতিটি ঘন একক প্রতি সাধারণ (common) উৎসের সংখ্যা—দূরতর উৎসগুলির তুলনায় নিকটতর উৎসগুলিতে কম। এ তথ্যের অর্থ এমনও হতে পারে যে আমরা মহাবিশ্বের একটা বিরাট অঞ্চলের (great ? মহান) কেন্দ্রে অবস্থান করছি। সে অঞ্চলে তরঞ্জের উৎসপ্তলি অন্যান্য অঞ্চলের তুলনায় শ্বর। এর বিকার অর্থ হতে পারে উৎসগুলির সংখ্যা অতীতে অর্থাৎ তরমগুলি যখন আমাদের অভিমুখে যাত্রা শুরু করেছে তখন এখনকার তুলনায় অনেক বেশী ছিল। দৃটি ব্যাখ্যাই স্থিরাবস্থাতত্ত্বের ভবিধ্যত্বাণীর বিরোধী। তাছাড়া, ১৯৬৫ সালে শৈঞ্জিয়াস্(Penzias) এক উইনসনের (Wilson) অণুভরন্ধ বিকিরণ (microwave) আবিষ্কারের ফলে ইন্সিত পাওয়া ধায় মহাবিদ্ধ অতীতে অনেক বেণী ঘন ছিল। সূতরাং স্থিরাবস্থাতত্ত্ব পরিতাজ হল।

একটি বৃহৎ বিক্ষোরণ ঘটেছিল, সুতরাং কালের একটি আরম্ভ আছে এই সিদ্ধান্ত এড়ানোর আর একটি প্রচেষ্টা ছিল ১৯৬৩ সালে ছু'জন ক্ল' বৈজ্ঞানিকের—ইড়্জেনী লিছ্শিজ্ (Evgenii Lifshitz) এবং আইজাক খালাভনিকভ (Issac Khalatnikov) এব। তাঁলের প্রস্তাবনা ছিল বৃহৎ বিক্ষোরণ শুধুমান্ত প্রিডমানের প্রতিরাশেরই বিশেষত্ব হতে পারে। সেওলি আসলে খাল্ডব মহাবিছের আসার (approximation) প্রতিরাশ মান্ত। হয়তো যে সমস্ত প্রতিরাশগুলি মোটামুটি থাল্ডব মহাবিছের অনুরাশ সেগুলির ভিতরে বৃহৎ বিক্ষোরণের অননাতা রয়েছে শুধুমান্ত গ্রিডমানের প্রতিরাশে। সে প্রতিরাশে নিহাবিকাগুলি প্রত্যাক্ষভাবে পরশার

থেকে দুরে অপস্যামান। সুভরাং অতীতের কোনো কালে সেগুলি একই স্থানে অবস্থিত ছিল এ অনুমানে বিশ্বয়ের কিছু নেই। কিছ বাস্তব মহাবিশ্বে নীহারিকাগুলি শুধুমাত্র পরস্পর থেকে প্রতাক্ষভাবে (directly) দূরে অপস্থামান তাই নয়; অদের সামানা একটু পার্ম অভিমুখী গতিবেগও রয়েছে। সূতরাং, বাস্তবে তাদের ঠিক একই স্থানে একই অবস্থায় থাকার কোনো প্রয়োজন ছিল না, প্রয়োজন ছিল শুধুমাত্র খুব কাছাকাছি থাকবার। তাহলে হয়তো বর্তমান প্রসারমান মহাবিশ্ব একটি অননা বৃহৎ বিস্ফোরণের ফলশ্রুতি না হতে পারে, হতে পারে পূর্বতন সম্ভোচনের ফলপ্রান্তি। মহাবিশ্ব যখন সম্ভূচিত হয়ে চুপুসে গোল (collapsed) তখন এর ভিতরকার কণিকাগুলির সবগুলির সংঘর্ষ হয়তো হয়নি, হয়তো সেগুলি পরস্পরকে ছাড়িয়ে দুরে অপসরণ করেছিল এবং সৃষ্টি হয়েছিল মহাবিশ্বের বর্তমান প্রসারণ। তাহলে আমরা কি করে বলতে পারি যে বাস্তব মহাবিশ্বের শুরু একটি বৃহৎ বিশ্বেসরণ থেকে? লিফ্শিক এবং খালাতনিকত মোটামৃটি ফ্রিডম্যানের প্রতিরূপের মতো মহাবিশ্বের একাধিক প্রতিরূপ নিয়েও চিঙা করেছিলেন। কিম্ব তিনি বাস্তব মহাবিশ্বের নীহারিকাগুলির অনিয়মিত এবং এলোমেলো (random) গতিরও বিচার করেছিলেন। তাতে দেখা গিয়েছিল, নীছারিকান্তলি যদি আর পরস্পর থেকে প্রত্যক্ষভাবে দূরে অপসরণ নাও করে, তা হলেও ঐরকম প্রতিরূপ একটি বৃহৎ বিশ্বোরণ থেকে শুরু হতে পারে। কিন্ধ তাঁরা বলেছিলেন, এটার সম্ভাবনা থাকতে শারে শুধুমাত্র এমন কডগুলি প্রতিরূপের ক্ষেত্রে, যেখানে নীহারিকাগুলি নির্ভুল সঠিক ভাবে চলমান। সে সব ক্ষেত্রকে ব্যতিক্রমই বলা উচিত। তাঁদের আরো যুক্তি ছিল বৃহৎ বিশ্বেদারণ ছাড়াও ফ্রিডম্যানের প্রতিরূপের মতো অসংখ্য প্রতিরূপ হতে পারে। সূতরাং আমাদের সিদ্ধান্ত হওয়া উচিত আসলে কোনো বৃহৎ বিশেদরণ হয়নি ! পরে কিন্তু তাঁরা বৃঝতে পেরেছিলেন ফ্রিডম্যানের মতো প্রতিরূপের অনেক বেশী সাধারণ (general) শ্রেণী রয়েছে, যেগুরুর এই অনন্যতা থাকতে পারে এবং সে সব ক্ষেত্রে নীহারিকাগুলি একটু বিশেষভাবে চলমান হওয়ার আবশ্যকতা নেই। সুতরাং ১৯৭০ সালে তাঁরা তাঁদের দবিী প্রত্যাহার করে নেন।

লিফ্লিজ্ এবং খালাতনিকভের গবেকণা ছিল মূলাবান, কারণ, এই গবেষণায় দেখা গিয়েছে ব্যাপক অপেক্ষবান যদি নির্ভূল হয়, তা হলে মহাবিশ্বের একটা অননাতা থাকতে পারত, হতে পারত একটা বৃহৎ বিশেষরণ। কিছ এর ফলে একটি নির্লায়ক সমস্যার সমাধান হয়নি: ব্যাপক অপেক্ষবাদের ভবিষাদ্বাণী কি এই যে আমাদের মহাবিশ্বের ক্ষেত্রে একটি বিশেষরণ থাকতে হবে অর্থাৎ থাকতে হবে একটি কালের প্রারম্ভ ? এর উত্তর পাওয়া গিয়েছিল ১৯৬৫ ব্রীষ্টাব্দে। ব্রিটিশ গণিত এবং পদার্থবিদ রক্ষার পোনরোক্ত (Roger Penrose) সম্পূর্ণ ভিয়া একটি চিন্তান তখন উপস্থিত করেন। ব্যাপক অপেক্ষবাদের আলোক শব্দুর (cone) আচরণ এবং মহাকর্ষের সর্বকালের আকর্ষণের সমন্ত্র করে তিনি দেখালেন, একটি তামফা নিক্ষর্ব মহাকর্ষের ফলে চুপ্সে যাওয়ার সময় এমন একটি অন্ধলে কন্দী হয় (trapped) যার পৃষ্ঠ (surface) সন্থাতিত হতে হতে হাতে শেষপর্যন্ত শ্বুন্য পরিণত হয়। সে অঞ্চলের পৃষ্ঠ সন্থাতিত হয়ে শূনা পরিণত হয়, সুতরাং তার আয়তনও অবলাই শূন্যে পরিণত হয়ে। তারকার ভিতরের সমন্ত পদার্থ সন্থান করেবে। সূতরাং পদার্থের ঘনত্ব এবং খান-ফালের বক্ষতাও হবে অসীমা। অন্য কথায় কৃষ্ণগহুর নামে পরিচিত

স্থান-কালের একটি অঞ্চলের একটি অনন্যতা থাকবে।

প্রথম দৃষ্টিতে পেনরোজের গবেষণার ফল শুধুমাত্র তারকাগুলির ক্ষেত্রেই প্রয়োগ করা হয়েছিল। অতীতে সমগ্র মহাবিশ্বের একটি বৃহৎ বিস্ফোরণরাপ অননাতা ছিল কিনা এই প্রশ্নের সঙ্গে তার কোনো সম্বদ্ধ ছিল না। কিন্তু পেনরোজ (Penrose) যখন তার এ উপপাদ্য উপস্থিত করলেন আমি তখন গবেষণারত ছাত্র। তখন আমি হনো হয়ে এমন একটা সমস্যা খুঁজছি যেটা নিয়ে আমার পি. এইচ. ডি-র গবেষণাপত্র সম্পূর্ণ করা যেতে পারে। দুবছর আগে আমার রোগ নির্ণয় করা হয়েছিল। নির্ণীত হয়েছিল আমি ALS রোগে ভুগছি। রোগটি সাধারণত লু গেরিকের ব্যাধি (Lou Gehrig's Disease) কিন্তা হেন্টর নিউরন ব্যাধি (Motor Neuron Disease) নামে পরিচিত। আমাকে যোঝানো হয়েছিল আমার আয়ু নাকি আর এক কিন্তা দুবছর। এই অবস্থায় আমার পি. এইচ. ডি-এর জন্য কান্ধ করার কোনো অর্থ ছিল বলে মনে হয়নি। অতদিন আমার বাঁচবার আশা ছিল না, অথচ দুবছর হয়ে গেল আমার অবস্থা এমন কিছু খারাপ হয়নি। আসলে ব্যাপারটা বরং আমার ক্ষেত্রে তালই চলছিল। জেন ওয়াইন্ড (Jane Wilde) নামে অত্যন্ত তাল একটি মেয়ের সঙ্গে আমার বিয়ে ঠিক হয়েছিল, কিন্তু বিয়ে করতে হলে আমার একটা চাকরীর দরকার এবং চাকরী পেতে হলে দরকার ছিল পি. এইচ. ডি.।

১৯৬৫ সালে আমি পেনরোজের উপপাদ্য সম্পর্কে পড়ি। উপপাদ্যটি হল, যে কোনো বন্তুপিণ্ডের মহাকর্ষের ফলে সঙ্কুচিত হয়ে চুপ্সে যেতে হলে শেষ পর্যন্ত তার একটি অনন্যতা (singularity) গঠন করতে হবে। আমি শীয় বুঝতে পারলাম পেনরোজের উপপাদ্যের সময়ের অভিমুখ যদি উপ্টে দেওয়া যায়, অর্থাৎ চুপ্সে যাওয়াটা যদি সম্প্রসারণ হয়ে যায়, তাহলেও উপপাদ্যের শর্তগুলি রক্ষিত হবে। অবশা আধুনিক কালের মহাবিশ্বের প্রতিরূপ বৃহৎমানে বিচার করলে যদি মোটামুটি ফ্রিডম্যানের প্রতিরূপের মতো হয়। পেনরোজের উপপাদ্য দেখিয়েছে, যে কোনো সঙ্কোচনশীল তারকা একটি অনন্যতায় (singularity) শেষ হবে। কাল বৈপরীত্যভিত্তিক যুক্তিতে দেখা গেল ফ্রিডম্যান তত্ত্বের অনুরূপ যে কোনো সম্প্রসারণশীল মহাবিশ্বকে একটা অনন্যতা দিয়ে শুক্ করতেই হবে। বাবহারিক (technical) কারগে পেনরোজের উপপাদ্যের প্রয়োজন ছিল স্থানে অসীম হওয়া। আসলে শুধুমারে প্রসারণ যদি এত ফ্রন্ড হয় যে সঙ্কোচন অসম্ভব হয়ে পড়ে তাহলেই মহাবিশ্বের একটা অনন্যতা থাকতে পারে— এই তথ্ব প্রমাণ করার জনাই আমি পেনরোজের তথ্য বাবহার করেছিলাম (কারণ, শুধুমারে ফ্রিডম্যানের মা প্রতিরূপগুলি স্থানে অসীম ছিল)।

পরবর্তী কয়েক বছরে আমি কতগুলি নতুন গাণিতিক ব্যবহারিক পদ্ধতি (technique) উদ্ধাবন করি। উদ্দেশ্য ছিল, যে সমস্ত উপপাদো প্রমাণ করা হয়েছে অননাতা হতেই হবে, তা থেকে এটা এক অন্যান্য ব্যবহারিক শর্ত দূর করা। চুড়ান্ত গবেষণার ফল ছিল ১৯৭০ সালে আমার এক পেনুরোজের একটি যুক্ত গবেষণাপত্র। সে পত্রে শেষ পর্যন্ত প্রমাণিত হয়, বাাপক অপেক্ষবাদ যদি নির্ভুল হয় এবং মহাবিশ্বে যে পরিমাণ পদার্থ আমরা পর্যবেক্ষণ করি, তার অক্তিত্ব যদি সত্য হয়, তা হলে একটা বৃহৎ বিশ্বোরণ অবশাই হয়েছিল। আমাদের গবেষণার বিরোধী ছিল অনেক। বিরোধিতা অংশত এসেছিল রুশদের কাছ থেকে। কারণ তাঁরা ছিলেন মার্মীয় বৈজ্ঞানিক নিমিত্রবাদে (determinism) বিশ্বাসী। আর যাঁরা বিরোধিতা

করেছিলেন, তাঁদের ধারণা ছিল অননাতা (singularity) বিষয়ক সমগ্র ধারণাগুলিই ি ি ি ি ি ি ি ।
আইনস্টাইনের তত্ত্বের বিরোধী এবং সে তত্ত্বের সৌন্দর্যহানি করে। কিন্তু কেউ তো আসলে
গাণিতিক উপপাদোর বিরুদ্ধে তর্ক করতে পারে না। সূতরাং শেষ পর্যন্ত আমাদের গবেষণা
সাধারণভাবে গৃহীত হয় এবং আজকাল প্রায় সবাই মেনে নিয়েছেন— মহাবিদ্ধের শুরু একটি
বৃহৎ বিশেয়ারণের অননাতা দিয়ে। ব্যাপারটা হয়তো পরিহাসের (irony) মতো শোলাবে—
আমি নিজের মতটা পাশ্টে ফেলে এখন অনা পদাধবিদদের বোঝাতে চাইছি যে মহাবিদ্ধের
শুরুতে আসলে কোনো অননাতা ছিল না। আমরা পরে দেখব কপাবাদী অভিক্রিয়া (quantum
effect) বিচার করলে অননাতা (singularity) মিলিয়ে যেতে পারে।

আমরা এই অধ্যায়ে দেখেছি মহাকির সম্পর্কে মানুবের যে দৃষ্টিভঙ্গি হাজার হাজার বছর ধরে সৃষ্টি হয়েছিল, অর্থ শতাব্দীর চাইতেও অল্প সময়ে সে দৃষ্টিভঙ্গি কালে গিয়েছে। হাবল আবিষ্কার করলেন মহাবিশ্ব প্রসারমান এক্ষ্ আমরা বৃষ্ধতে পারলাম, মহাবিশ্বের বিরাটতে আমাদের গ্রহটির স্থান নগণ্য। এই শুধু শুরু। পরীকামূলক এবং তাত্ত্বিক সাক্ষা জমা ছতে লাগল এক ক্রমশই স্পষ্ট খেকে স্পষ্টতর হল যে, কোনো এক কালে মহাকিছ শুরু হয়েছিল। অবশেষে ১৯৭০ সালে, আইনস্টাইনের ব্যাপক অপেক্ষবাদের ডিস্তিতে আমি এক শেনরোক্ত এ তব্ব চুড়াস্তভাবে প্রমাণ করেছি। এই প্রমাণ থেকে দেখা গিয়েছে, ব্যাপক অপেকবাদ একটি অসম্পূর্ণ তত্ত্ব। মহাবিশ্ব কি করে শুরু হল, এ তত্ত্ব তা বলতে পারে না। তার কারণ, এ তত্ত্বের ভবিষ্যত্বাণী অনুসারে ব্যাপক অপেক্ষবাদ সম্বেত সমস্ত ভৌত ভব্ধ মহাবিশ্বের প্রারম্ভের সময় ভেত্তে পড়ে। ব্যাপক অপেক্ষবাদ কিন্তু দাবী করে সে নিক্ষেও একটি আংশিক ভক্ত মাত্র। সূতরাং অনন্যতার উপশাদাগুলি (singularity theorem) আসলে প্রদর্শন করে যে, মহাবিশ্বের অতি আদি যুগে এমন একটি কাল অবশ্যই ছিল যখন মহাবিশ্ব ছিল এত শুদ্র যে সে সম্পর্কে বিংশ শতাব্দীর দ্বিতীয় মহান আংশিক ভদ্ধ কগাবাদী কাবিদ্যার (quantum mechanics) কুম্বমানের অভিক্রিয়াগুলি (small scale effect) কোনো ক্রমেই অপ্রাচ্য কর যায় না। ১৯৭০ দশকের প্রথমে আমরা আমাদের অস্তাভাবিক বিরাট সম্পর্কীয় তন্ত থেকে অস্বাভাবিক ক্ষুদ্র সম্পর্কীয় তত্ত্বের দিকে অন্তিমুখ ফেরাতে বাধ্য হই। এর উদ্দেশ্য মহাবিশ্বকে বোঝা। দৃটি আংশিক তত্ত্বকে সন্মিলিত করে এঞ্চটি কশাবদী মহাকর্ষ তত্ত্ব পঠন করার প্রচেষ্টার বিবরণ দেওয়ার আঙ্গে আমরা কশাবদি। বলবিধ্যার বিবরণ দেব।

অনিশ্চয়তাবাদ

(The Uncertainty Principle)

বৈজ্ঞানিক তত্ত্বগুলির সাফলা, বিশেষ করে, নিউটনীয় মহাক্ষীয় তত্ত্বের সাফলোর ফলে উনবিংশ শতাব্দীর প্রথম দিকে ফরাসী বৈজ্ঞানিক মার্কুইস দা লাপ্লাস (Marquis De Laplace) যুক্তি দেখিয়েছিলেন— মহাবিশ্ব সম্পূর্ণভাবে নির্ধারণীয় (বৈজ্ঞানিক নিয়তিভিত্তিক— deterministic)। লাপ্লাসের প্রস্তাবনা ছিল, এমন একগুছে বৈজ্ঞানিক বিধি থাকা উচিত যার সাহায়ে মহাবিশ্বের যে কোনো এক সময়কার অবস্থা যদি সম্পূর্ণভাবে জানা থাকে, তা হলে ভবিষাতে মহাবিশ্বে কি ঘটুরে সে সম্পূর্কে সম্পূর্ণ ভবিষাত্বাণী করা সম্ভব হবে। উদাহরণ: সূর্য একং প্রহণ্ডলির যে কোনো এক সময়কার দ্রুতি একং অবস্থান যদি জানা থাকে, তা হলে নিউটনের বিধিগুলির সাহায়ে সৌরতস্ত্রের অন্য যে কোনো সময়কার অবস্থা গণনা করে বলা সম্ভব। এক্ষেত্রে নির্ধারণীয়তাবাদ (determinism) কেল ম্পষ্ট। কিন্তু লাপ্লাস আরো খানিকটা অগ্রসর হয়েছিলেন। তাঁর অনুমান ছিল, অন্য সমস্ত বিষয় সম্পর্কে, এমন কি, মানবিক আচরণ সম্পর্কেও এই ধরনের বিধি রয়েছে।

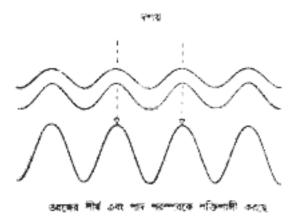
অনেকেই বৈজ্ঞানিক নির্যারণীয়তাবাদের (determinism) খোর বিরোধী ছিলেন। তাঁরা মনে করতেন, এই যতবাদ পৃথিবীতে ঈশ্বরের হস্তক্ষেপের স্বাধীনতায় হস্তক্ষেপ করে। কিন্তু, তবুও এই শতাব্দীর প্রথম দিক পর্যন্ত নির্যারণীয়তাবাদই ছিল প্রমাণ (standard) বৈজ্ঞানিক অনুমান। এই বিশ্বাস পরিত্যাগ করতে হবে— এই সম্পর্কে প্রথম ইন্নিভগুলির একটি ছিল ব্রিটিশ বৈজ্ঞানিক লর্ড রালে (Lord Rayleigh) এবং সাার জেমস্ জিনসের (Sir James Jeans) গণনা। সে গণনায় দেখা যায়, যে কোনো উত্তপ্ত বন্তপিও কিন্তা তারকার মতো একটি বন্তপিও আর্থাপ্রকভাবে অসীম হারে শক্তি বিক্রিরণ করবে। তখন আমরা যা বিশ্বাস করতাম.

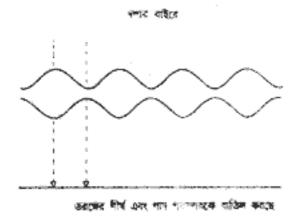
90

শক্তির পরিয়াগও অসীম।

সুস্পষ্ট হাস্যকর এই ফলশ্রুতি এড়ানোর জন্য জার্মান বৈজ্ঞানিক ম্যাক্স প্লাক্ষ (Max Planck) ১৯০০ খ্রীষ্টাব্দে প্রস্তাব করেন-- আলোক, এক্স-রে এবং অন্যান্য তরঙ্গ যাদৃষ্ঠিক (arbitrary) হারে বিকিরিত হতে পারে না। বিকিরিত হতে পারে শুধুমাত্র বিশেষ প্যাকেটে (packet), তার নাম তিনি দিয়েছিলেন কোয়ান্টা। তা ছাড়া প্রতিটি কোয়ান্টাতেই একটা বিশেষ পরিমাণ শক্তি থাকে এবং তরঙ্গের স্পদ্দান্ত যত বেশী হয় শক্তিও হয় তত বেশী। সুতরাং যথেষ্ট উচ্চ স্পন্দান্ধ হলে এক একটি কোয়াণ্টামের বিকিরণে যে শক্তির প্রয়োজন হবে সেটা প্লাপ্তিযোগ্য শক্তির চাইতে বেশী। সূতরাং উচ্চ ম্পন্দান্তের বিকিরণ কমে যাবে। অতএব, বস্তুপিণ্ড যে শক্তি ক্ষয় করবে, সেটাও হবে সীমিত।

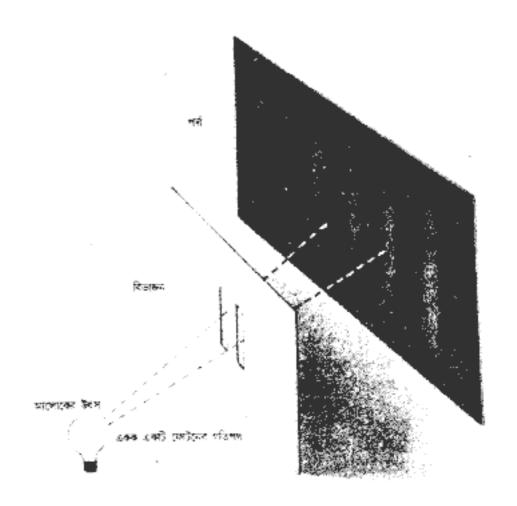
কোয়ান্টাম প্রকল্প (hypothesis) তপ্ত বস্তুপিশুগুলি থেকে বিকিবণ নির্গত হওয়ার পর্যবেক্ষণ করার হার ভালই ব্যাখ্যা করেছিল। কিন্তু ১৯২৬ সালের আগে পর্যন্ত নির্ধারণীয়তাবাদ (determinism) সাপেক্ষ এই প্রকল্পের ফলক্রতি বোঝা যায় নি। সেইসময় ওয়ার্নার হাইজেনবার্গ (Werner Heisenberg) নামে আর একজন জার্মান বৈজ্ঞানিক বিস্থাত অনিশ্চয়তাবাদ Junce rtainty principle) গঠন করেন। একটি কণিকার (particle) ভবিষাৎঅবস্থান ও গতিবেগ (velocity) সম্পর্কে ভবিষ্যদ্বাণী করতে হলে তার বর্তমান অবস্থান ও গতিবেগ নির্ভুলভাবে মাপা প্রয়োজন। স্পষ্টতই এ কাজ করার সহজ পদ্ম কণাটির উপর আলোকপাত করা। তা হলে কিছু আলোক তরঙ্গকে এ কণিকা বিক্ষিপ্ত (scattered) করে দেবে এবং তার ফলে তার অবস্থানের নির্দেশ পাওয়া যাবে। কিন্তু আলোকের দুটি তরঙ্গশীর্ষের দূরত্বের চাইতে বেশী নির্ভুলভাবে ঐ কণিকার অবস্থান নির্ধারণ করা যাবে না। সেইজন্য প্রয়োজন হবে ব্রস্ত তরঙ্গদৈর্ঘোর আলোকপাত করা, যাতে কণিকাটির অবস্থান সঠিকভাবে মাপা যায়। কিন্তু প্লান্তের কোয়ান্টাম প্রকল্প অনুসারে যাদৃচ্ছিক (arbitrary) কুদ্র পরিমাণ আলোক ব্যবহার করা সম্ভব নয়। অস্ততপক্ষে, এক কোৱাটাম আলোক ব্যবহার করতে হবে। কিন্তু এই কোৱাটাম কণিকাটিকে অস্থির করে তুলবে (disturb) এবং তার গতিবেগে এমন পরিবর্তন আনবে যে সে সম্পর্ক ভবিষ্যম্বাণী করা যাবে না। তা ছাড়া, অবস্থানের মাপন যত নির্ভূল হবে, আলোকের তরক্ষদৈর্ঘাত তত কুদ্র হবে। সুতরাং এক কোয়ান্টামে শক্তির পরিমাণও হবে উচ্চতর। তা হলে, কণিকাটির গতিবেগের স্থিত্তকে বৃহত্তর শক্তি বিশ্বিত করে তুলবে। অন্যভাবে বলা যায়, একটি কণিকার অবস্থান যত নির্ভুলভাবে মাপার চেষ্টা করা যাবে, তার দ্রুতির মাপন হবে তত কম নির্ভুল এবং এর বিপরীতও সতা হবে (vice versa)। হাইজেনবার্গ দেখিয়েছিলেন কণিকাটির ভর্ত্তে তার গতিবেগের অনিশ্চয়তা দিয়ে গুণ করে তাকে কণিকার অবস্থানের অনিশ্চয়তা দিয়ে


গুল করলে গুণফল কখনোই একটি বিশেষ পরিমাণের কম হতে পারে না। এই পরিমাণই প্লাঙ্কের ধ্রুবর্ক (Plank's constant) বলে পরিচিত। তাছাড়া, এই সীমা কণিকাটির অবস্থান মাগনের চেষ্টার পদ্ধতি কিয়া গতিবেগ মাগনের চেষ্টার পদ্ধতি কিয়া কণিকার জাতিরূপের (type) উপর নির্ভরশীল নয়: হাইজেনবার্গের অনিশ্চয়তার নীতি বিশ্বের একটি মূলগত অনতিক্রমণীয় ধর্ম।


পৃথিবী সাপেক্ষ আমাদের দৃষ্টিভঙ্গি সম্পর্কে এই অনিশ্চয়তার নীতির নিহিতার্থ গভীর। পঞ্চাল বছরেরও বেলী সময় কেটে গিয়েছে। এখনও বছ দার্শনিক ব্যাপারটার মর্ম সম্পূর্ণভাবে উপলব্ধি করতে পারেন নি^{*}এবং এখনও এই অনিশ্চয়তার নীতি বহু দ্বশ্বের মূলে রয়েছে। লাপ্লাসের (Laplace) স্বপ্ন ছিল বিজ্ঞানের এমন একটি তত্ত্ব-- মহাবিশ্বের এমন একটি প্রতিরূপ যা হবে সম্পূর্ণ নির্ধারণযোগ্য (deterministic): মহাবিশ্বের বর্তমান অবস্থানই যদি নির্ভুলভাবে মাপা সম্ভব না হয়, তা হলে ভবিষাৎ সম্পর্কে নির্ভুনভাবে বলা অসম্ভব। এই পরিস্থিতি লাপ্লাসের স্বয়ের অন্তিম অবস্থারই ইঙ্গিত। অবস্য আমরা এখনো করনা করতে পারি কোনো এক অতিপ্ৰাকৃত জীব সাপেক্ষ এমন একগুচ্ছ বিধি রয়েছে যে বিধি ঘটনাবলী সম্পূর্ণভাবে নির্ধারণ করে। তিনি হয়তো কোনোরকম অন্থিরতার সৃষ্টি না করেই মহাবিশ্বের বর্তমান অবস্থা পর্যবেকণ করতে পারেন! কিন্তু আমাদের মতো সাধারণ মরগদীল জীবের পক্ষে মহাবিধের সেই প্রতিরূপের কোনো আকর্ষণ নেই। তার চাইতে বরং ওকাম্স রেজর (Occam's razor) নামক মিতব্যয়িতার নীতি প্রয়োগ করে তত্ত্বটির যা কিছু পর্যবেক্ষণ করা যায় না সবটাই ছেঁটে বাদ দিতে পারি। উনিশশ কুড়ির দশকে এই দৃষ্টিভঙ্গির সাহায়ে ছাইজেনবার্গ, এরভিন শ্রমেডিংগার এবং পল্ ডিরাক বলবিদ্যার পুনগঠন করে কণাবাদী কলবিদ্যা (quantum mechanics) নামক নতুন তত্ত্ব প্রতিষ্ঠা করেন। এই নতুন তত্ত্বের ডিন্টি হল জনিশ্চয়তাবাদ। এই তত্ত্ব অনুসাল্লে কণিকাগুলির আর পৃথক সুসংক্ষিত (well-defined) অপর্যকেশযোগ্য অবস্থান এবং গতিবেগ রইল না। তার কালে তাদের থাকল কোয়ান্টাম অবস্থা। সে অবস্থা গতিবেগ এবং অবস্থানের সমন্বয়।

সাধারণত, কণাবাদী বলবিদ্যার (quantum mechanics) ভবিষ্যদ্বাদীতে একটি পর্যবেক্ষণের একক সুনিশ্চিত ফল থাকে না। তার বদলে সে ভবিধাদ্বাণীতে থাকে অনেকগুলি পূথক পূথক (different) ফলহাতি। ডাছাড়া থাকে ফলগুলির প্রতিটির কডটা সম্ভাব্যতা। অর্থাৎ কেউ যদি বহুসংখ্যক সমরূপতন্তের (similar system) একই মাপ নেন এবং তাদের প্রতিটি যদি একইভাবে শুরু হয়ে থাকে, ভাহলে দেখতে পাবেন বিশেষ সংখ্যক ক্ষেত্রে মাপন ফল হবে क। ভিন্ন আর কিছু ক্ষেত্রে মাপন ফল হবে খ এবং এই রকম (and so on)। কতবার ফল ৰু কিম্বা খ হবে সে সম্পর্কে একটা আসল্ল (approximate) সংখ্যা ভবিষ্যদ্বদীতে থাকতে পারে। কিন্তু একক একটি মাপনের বিশেষ ফল (specific result) সম্পর্কে ভবিধাদ্বাদী করা যাবে না। সুভরাং কোয়ান্টাম কাবিদ্যা বিজ্ঞানের ক্ষেত্রে উপস্থিত করেছে ভবিষাদ্বাদী করার অসম্ভাব্যতা কিয়া একটা এলোমেলো অনিশিওত অবস্থা

১- ওকান্দ্ বেক্ষর: উইনিয়াৰ অৰ ওকাৰ (১২৮২-১৩৪৯); ওকাছের নামে পরিচিত রিতভায়িতার নীতি: এ নিতি গালিলিকর মাতা অনেকেই অনুসরণ করেছেন। নীডিটির মূল বক্তবা হল: সরলতম প্রকর্মই গ্রহণ যোগ্য-- অনুবাদক।


(randomness)। এই পরিস্থিতি এড়ানো অসম্ভব। এই সমস্ত চিন্তাধারার বিকাশে আইনস্টাইন খুব গুরুত্বপূর্ণ ভূমিকা পালন করেছিলেন। কিন্তু এ বাগপারে তাঁর খুবই আপত্তি ছিল। কোয়াটাম তত্ত্বে অবদানের জনা আইনস্টাইনকে নােবেল পুরস্কার দেওয়া হয়েছিল। কিন্তু তা সঞ্জেও মহাবিশ্ব শাসিত হয় আপতন (chance) দ্বারা—এ তত্ত্ব আইনস্টাইন কখনােই মেনে নিতে পারেন নি। এ সম্পর্কে তাঁর মনােভাব সংক্ষেপে তাঁর বিখ্যাত প্রতিবেদনে বলা হয়েছে—'ক্ষাব্র পাশা খেলেন না।'' কিন্তু অন্যান্য বৈজ্ঞানিকদের অধিকাংশই কােয়াটাম বলবিদাকে মেনে নিতে ইছুক ছিলেন। তার কারণ, এ বলবিদারে সঙ্গে পরীক্ষামূলক তথাের নিখুঁত ঐকা ছিল। সতিটেই এ তথ্য বিশেষভাবে সাফল্য লাভ করেছে। আধুনিক বিজ্ঞান এবং প্রযুক্তিবিদ্যার প্রায় অধিকাংশের ভিত্তি এই তত্ত্ব। ট্রানজিস্টার এবং সমকলিত পরিপথ (integrated circuit) নিয়ন্ত্রণ করে এই তত্ত্ব। টোলিভিশন এবং ইলেকট্রনিক যন্ত্রপাতিরও অবিচ্ছেদা উপাদান ট্রানজিস্টার এবং সমকলিত পরিপথ (integrated circuit) যুক্ত করা হায়নি প্রতিত্বিজ্ঞানের যে দুটি ক্ষেত্রে কোয়াটাম বলবিদ্যাকে এখনও সঠিকভাবে যুক্ত করা যায়নি, সে দুটি হল মহাকর্ষ এবং মহাবিশ্বের বৃহৎমাত্রিক গঠন (large scale structure)। আলোক ভরঙ্গ দিয়ে গঠিত হলেও প্লাক্তের কোয়াটাম প্রকল্প বলে, কোনা

চিক্স ৪.১ কোনো অবস্থায় অংলোকের আচরণ এমন যে মনে হয় আলোক কণিকার দ্বারা গঠিত। আলোক

শুধুমাত্র পাাকেট (packet) কিছা কোয়ান্টাম রূপেই নির্গত হতে পারে কিছা বিশোষিত হতে পারে। একইভাবে হাইজেনবার্গের অনিশ্চয়ভাবাদের অর্থ কণিকাও কোনো কোনো ব্যাপারে তরক্ষের মতো আচরণ করে। তাদের কোনো নিশ্চিত অবস্থান নেই। সেগুলি বিশেষ সম্ভাবনায় বিতরিত হয়ে প্রলিপ্ত হয় (smeared out with a certain probability distribution)। কোয়ান্টাম গণিতের তত্ত্বের ভিত্তি সম্পূর্ণ অনা এক ধরনের গণিত। এ গণিত কণিকা এবং তরক্ষের বাশ্বিধিতে (terms) আর বাস্তব জগতের বিবরণ দান করে না। এই সমস্ত

চিত্ৰ ৪.২

বাদিধিতে শুধুমাত্র পর্যবেক্ষণ করা বিশ্বেরই বিবরণ দেওয়া যেতে পারে। সেজনা কোয়াটাম বলবিদ্যাতে তরঙ্গ এবং কণিকার ভিতরে দ্বিত্ব (duality) রয়েছে। কোনো কোনো উদ্দেশ্যে কণিকাগুলিকে তরঙ্গরূপে চিন্তা করলে সুবিধা হয়, আবার কোনো কোনো উদ্দেশ্যে তরঙ্গকে কণিকা রূপে চিন্তা করলেই ভাল। এর একটা ওল হপ্ণ ফলশ্রুতি হল, দুই কেতা (set) তরঙ্গ কিন্তা কণিকার ভিতরে ব্যতিচার (interference) পর্যবেক্ষণ করা সম্ভব। অর্থাৎ এক

কেতা (set) তরক্ষের শীর্ষ অনা কেতা (set) তরঙ্গপাদের (wave trough) সঙ্গে সমস্থানিক (coincide) হতে পারে। তা হলে দুই কেতা তরঙ্গ পরস্পরকৈ বাতিল করে দেবে। আশা করা যেতে পারত দুটি যোগের ফলে আরো শক্তিশালী একটা তরঙ্গ হবে কিন্তু সেটা হয় না (চিত্র—৪.১)। সাবানের ফেনার বুদ্বুদের ভিতরে যে রঙ্গ দেখা যায়, সেটা আলোকের ক্ষেত্রে বাতিচারের (interference) একটি সুপরিচিত উদাহরণ। যে সৃষ্ট্র জলের পর্দা ঐ বুদ্বুদটি গঠন করে, তার দুর্শাশ থেকে আলোর প্রতিফলনই এর কারশ। সাদা আলো বিভিন্ন তরঙ্গদৈর্ঘ্যের আলোক নিয়ে গঠিত। বিশেষ কয়েকটি তরঙ্গদৈর্ঘ্যের ক্ষেত্রে একদিক থেকে প্রতিফলিত তরঙ্গগুলির শীর্য অনা দিক থেকে প্রতিফলিত তরঙ্গপাদ সমস্থানিক (coincide) হয়। এই তরঙ্গদৈর্ঘ্যের অনুরাশ রঙগুলি প্রতিফলিত আলোকে অনুপত্তিত থাকে। সুতরাং সে আলোকগুলিকে রঙিন মনে হয়।

কোয়ান্টাম বলবিদ্যা যে দ্বিত্ব (duality) উপস্থাপন করেছে, তার দরুন কণিকার ক্ষেত্রেও ব্যতিচার হতে পারে। তথাকথিত দুটি চেরা ছিদ্রের পরীক্ষা (two-slit experiment, চিত্র ৪.২) এর একটা বিখ্যাত উদাহরণ। দুটি সমান্তরাল ও সরু চেরাই যুক্ত একটা বিভাক্তক প্রাচীরের কথা বিবেচনা কর্কন। প্রাচীরের একপাশে একটি বিশেষ রঙের আলোকের উৎস স্থাপন করা হোক' (অর্থাৎ, একটি বিশেষ তরঙ্গাদর্য্যের আলো)। অধিকাংশ আলোই বিভাক্তক প্রাচীরে পড়বে কিন্তু খুব সামান্য পরিমাণ আলো ঐ চেরাই করা ফাঁকের ভিতর দিয়ে যাবে। এবার তেবে নেওয়া যাক বিভাক্তক প্রাচীরের অনাদিকে একটা পর্দা টাঙানো হয়েছে। পর্দার যে কোনো বিন্দুতেই দুটি চেরাই করা ফাঁক থেকে তরঙ্গ এসে পড়বে। কিন্তু সাধারণত দুটি চেরাই করা ফাঁক দিয়ে উৎস থেকে পর্দায় পৌঁছাতে আলোর ভিন্ন ভিন্ন দূরত্ব অন্তিক্রম করতে হবে। এর অর্থ হবে চেরাইয়ের ফাঁক দিয়ে নির্গত তরঙ্গগুলি যখন পর্দায় পৌঁছাবে তখন তারা পরস্পর সাপেক্ষ একই দশায় (phase) থাকবে না। কোনো কোনো ক্ষেত্রে তারা পরস্পরক বাতিল করবে আবার কোনো কোনো ক্ষেত্রে তারা পরস্পরকে বাতিল করবে আবার কোনো কোনো ক্ষেত্রে তারা পরস্পরকে বাতিল করবে আবার কোনো কোনো ক্ষেত্রে তারা পরস্পরকে বাতিল করবে আবার কোনো কোনো কোনো আবার বালর।

উল্লেখযোগা ব্যাপার হল, যদি আলোক উৎসের বদলে নির্দিষ্ট নিশ্চিত গতি সম্পন্ন কোনো কণিকা প্রতিষ্থাপন করা যায়, তা হলে একই রকম নক্ষা পাওয়া যাবে। সে কণিকা ইলেকট্রনও হতে পারে (এর অর্থ হল অনুরূপ তরঙ্গগুলিরও একটা নির্দিষ্ট নিশ্চিত দৈর্ঘা রয়েছে)। ব্যাপারটা আরো অছুত এইজন্য যে শুধুমাত্র একটি চেরাই করা ফাঁক থাকলে নক্ষা পাওয়া যায় না। পাওয়া যায় পর্দার উপরে সমরূপে বশ্টিত (uniformly distributed) ইলেকট্রন। অনেকে ভাবতে পারেন, আর একটি চেরাই করা ফাঁক থাকলে পর্দার প্রতিবিন্দৃতে যে ইলেকট্রনগুলি আঘাত করছে সেগুলির সংখ্যা বাড়বে। কিন্তু বাতিচারের (interference) জনা বাস্তবে কোনো কোনো হানে ইলেকট্রনের সংখ্যা বরং কমে যায়। এই চেরাই করা ফাঁক দুটো দিয়ে যদি একটা করে ইলেকট্রন পাঠানো যায়, তা হলে আশা করা উচিত ছিল ইলেকট্রনগুলি কোনো বার একটি ফাঁক দিয়ে চুকবে, কোনো বার অন্য ফাঁক দিয়ে চুকবে। অর্থাৎ শুধুমাত্র একটি ফাঁক হলে তাদের আচরণ যে রকম হোত, সে রকম আচরণ হবে।

ফলে পর্দার উপরে সমরূপ বন্টন হবে। বাস্তব ক্ষেত্রে কিন্তু একটি করে ইলেকট্রন পাঠালেও নক্ষা দেখা দেয়। তা হলে প্রতিটি ইলেকট্রন নিশ্চয়ই একই সময়ে দুটি ফাঁক দিয়ে ঢুকছে!

কণিকাগুলির ভিতরে ব্যতিচার (interference) আমাদের পরমাণুর গঠন বোঝার পক্ষে একটি বিনিশ্চায়ক (crucial) পরিঘটনা। রসায়ন ও জীববিদায় এই পরমাণুই মৃল একক (basic unit)। আর এই পরমাণুই আমরা ও আমাদের চারগাশে যা আছে সেগুলি গঠন করার ইট। এ শতাদীর প্রথমে ভাষা হোত অপুগুলি অনেকটা সূর্যের কক্ষপথে ঘ্র্নায়মান গ্রহের মতো। ইলেকট্রনগুলি [অপরা (negative) কৈদ্যুতিক কণিকা] কেন্দ্রীয় নিউক্লিয়াসের চারপাশে ককপথে ঘূর্ণায়মান। কেন্দ্রীয় নিউক্লিয়াস পরা (positive) বিদ্যুৎ বহন করে। অনুমান করা হোত সূর্য এবং গ্রহগুলির অন্তর্বতী মহাকর্ষীয় আকর্ষণ (gravitational attraction) যে রকম গ্রহণ্ডলিকে তাদের কক্ষপথে রাখে ঠিক সেই রকম অপরা এবং পরা বিদ্যুতের আকর্ষণও ইলেকট্রনগুলিকে তাদের কক্ষণতে রাখে। এ তত্ত্বের অসুবিধা হল, কোয়ান্টাম বলবিদ্যার আগেকার বলবিদ্যা এবং বিদ্যুৎবিজ্ঞানের (electricity) বিধি অনুসারে পূর্বাভাস ছিল: ইলেকট্রনগুলি ক্রমশ শক্তি হারাবে এবং ক্রমশ ঘুরতে ঘুরতে ভিতরে প্রবেশ করবে এবং নিউক্লিয়াসের সঙ্গে তাদের সংঘর্ষ হবে। এর অর্থ হোত পরমাণু এবং সমস্ত পদার্থই দ্রুত চুপ্সে অত্যন্ত ঘন একটি অবস্থায় পৌঁছাবে। ১৯১৩ খ্রীষ্টাব্দে ডেন্মার্কের বৈজ্ঞানিক নীলস্ বোর (Niels Bohr) এই সমস্যার একটি আংশিক সমাধান শেয়েছিলেন। তাঁর প্রস্তাবনা (suggestion) ছিল ইলেকট্রনগুলি হয়তো কেব্রীয় নিউক্লিয়াস থেকে যে কোনো দুরত্বে অবস্থিত কক্ষপথে প্রদক্ষিণ করতে পারে না। প্রদক্ষিণ করতে পারে কয়েকটা বিশেষ নির্দিষ্ট দূরত্ত্ব। এছাড়া যদি অনুযান করা যায় এই সমস্ত দূরত্বের যে কোনো একটিতে মাত্র একটি কিল্লা দুটি ইলেকট্রন কক্ষপথে ঘুরতে পারে তাহজে পরমাণু চুপ্সে যাওয়ার সমস্যা সমাধান করা যেতে পারে। কারণ, সে ক্ষেত্রে সর্বনিয় শক্তি একং দূরত্তে অবস্থিত কক্ষপথ ছাড়া ইলেকট্রনগুলি অনা কোনো কক্ষপথে ঘুরতে পারে না।

এই প্রতিরূপ সরলতম পরমাণু হাইড্রোজেনের গঠন খুব তালই ব্যাখ্যা করতে পারে।
কারণ তার নিউক্লিয়াসের চারপাশে কক্ষপথে ঘূর্ণায়মান একটিমাত্র ইলেকট্রন থাকে। কিন্তু
এই তব্ব কি করে আরো জটিল পরমাণুর ক্ষেত্রে প্রসারিত করা যায় সেটা খুব স্পষ্ট ছিল
না। তা ছাড়া অনুমোদিত সীমিত কয়েক কেতা মাত্র কক্ষ সম্পর্কে ধারণা খুব যাদৃছিক বলে
মনে হোত। কোয়াল্টাম কাবিদ্যার নতুন তব্ব এই অসুবিধা দূর করেছে। এই তব্বে প্রকাশ
পেয়েছে নিউক্লিয়াসের সর্বদিকে কক্ষপথে ঘূর্ণায়মান ইলেকট্রনকে একটি তরঙ্গও তারা চলে।
সেই তরঙ্গের দৈর্ঘা নির্ভর কর্মের তার গতিবেগের উপর। কোনো কোনো কক্ষপথের ক্ষেত্রে
কক্ষের দৈর্ঘা হবে ইলেকট্রনের তরঙ্গদৈর্ঘার একটি পূর্ণ সংখ্যার অনুরূপ (ত্বে ভয়াংশের
নয়)। এই সমস্ত কক্ষপথের ক্ষেত্রে প্রতি আবর্তনে তরঙ্গশীর্ষ থাকবে একই জায়গায়। সুতরাং
তরঙ্গগুলি যোগ হতে থাকবে। এই কক্ষপথস্তালি হবে বোরের অনুমোদিত কক্ষগুলির অনুরূপ।
কিন্তু যে সমস্ত কক্ষপথের দৈর্ঘা তরঙ্গদৈর্ঘাগুলির একটি পূর্ণ সংখ্যা নয়, সে সমস্ত ক্ষেত্রে
ইলেকট্রনগুলি যখন ঘূর্ণায়মান তখন প্রতিটি তরঙ্গশীর্ষকে একটি তরঙ্গপাদ ব্যতিল করে দেবে।

pandiali

যে তরঙ্গুলির দৈর্ঘ্য পূর্ণ সংখ্যা নয়, সেগুলি অনুমোদিত হবে না।

আমেরিকান বৈজ্ঞানিক রিচার্ড ফেনমানের (Richard Feynman) উপস্থিত করা ভধাকথিত ইতিহাসের যোগফল (sum over histories), তরঙ্গ এবং কণার দ্বিত্ব (duality) অনুধাবন করার একটা খুব সুন্দর শছতি। এই উপস্থাপনে চিরায়ত অ-কোয়ান্টাম তত্ত্বের মড়ো স্থান-কালে কণিকার একটি মাত্র ইতিহাস কিলা পথ অনুমান করা হয় না। তার বদলে অনুযান করা হয় কণিকাটি সম্ভাব্য যে কোনো পথেই রু থেকে খ-এ যেতে পারে। প্রতিটি পথের সঙ্গে দৃটি সংখ্যা যুক্ত। একটি সংখ্যা তরঙ্গের আকার নির্দেশক, আর অনাটি নির্দেশ করে এই চক্রে তার স্থান (অর্থাৎ এটা শীর্ষে না পাদে অবস্থিত)। ক থেকে খ-এ যাবার সম্ভাবনা পাওয়া যায় পথ সাপেক্ষ সমস্ত তরঙ্গের যোগফল দিয়ে। সাধারণভাবে কাছাকাছি পথের কেডাগুলি তুলনা করলে (a set of neighbouring path) এই চত্রে দশা (phase) অর্থবা অবস্থানের প্রচুর পার্থক্য দেখা যাবে। এর অর্থ হল— এই সমস্ত পথের সঙ্গে সংশ্লিষ্ট ভরক্ষণ্ডানি প্রায়ে নির্ভুলভাবে একে অপরকে বাতিল করে দেবে। তবে কাছাকাছি পথগুলির কোনো কোনো কেতার (sets) পথগুলির ভিতর দশার (phase) খুব পার্থকা হবে না। এই পথগুলি সাপেক্ষ তরঙ্গগুলি পরস্পরকে বাতিল করবে না। এই পথগুলি বোরের অনুমোদিত কক্ষণথগুলির অনুরূপ।

এই ধারণাগুলির ভিত্তিতে মূর্ত গাণিতিক গঠনের সাহায্যে আরো জটিল পরমাণুর ক্ষেত্রে, এমন কি, অণুর ক্ষেত্রেও অনুমোদিত কক্ষপথগুলি গণনা করা তুলনায় কেশ সহন্ত ছিল। অপুঞ্জলি কক্ষন্থিত ইলেকট্রন দ্বারা আবদ্ধ একাধিক পরমাণু দ্বারা গঠিত। এই ইলেকট্রনগুলি একাধিক কেন্দ্রক (নিউক্লিয়াস) প্রদক্ষিণ করে। অণুর গঠন এবং তাদের পারস্পরিক প্রতিক্রিয়া সমগ্র রসায়ন শাস্ত্র এবং জীববিদ্যার ভিত্তি। সে জনা নীতিগতভাবে কোয়ান্টাম বলবিদ্যা আমাদের চারপালে আমরা যা কিছু দেখি সে সম্পর্কে পূর্বাভাস দেবার সামর্থা দান করে। অবশ্য সে সামর্থ্য অনিস্কয়তাবাদ দিয়ে সীমিত (কার্যক্ষেত্রে কিন্তু যে সমস্ত তন্ত্রে কয়েকটির বেশী ইলেকট্রন আছে সেগুলি সম্পর্কে গণনা এত জটিল যে আমরা সে গণনা করতে পারি না)।

মনে হয় আইনস্টাইনের ব্যাপক অপেঞ্চবাদ মহাবিশ্বের বৃহৎমাত্রিক গঠনের নিয়ামক। এটা হল তথ্যকথিত চিরায়ত তত্ত্ব (classical theory), অর্থাৎ এ তত্ত্ব কোয়ান্টাম বলবিদ্যার অনিশ্চয়তাবাদ বিবেচনা করে না। অথচ অন্যান্য তত্ত্বের সঙ্গে সঙ্গতি রক্ষার জন্য এটা বিবেচনা করা উঠিত। এর জন্য পর্যবেক্ষণফলের সঙ্গে কোনোরকম গোলমাল না হওয়ার কারণ, সাধারণত আমাদের অভিজ্ঞতায় যে সমস্ত মহাকধীয় ক্ষেত্র আমরা পাই সেগুলি খুবই দুর্বল। ইতিপূর্বে আলোচিত অনন্যতার উপপাদ্য (singularity theorem) অনুসাবে কিন্তু মহাক্ষীয় ক্ষেত্রের অন্তত্ত দৃটি পরিস্থিতিতে খুবই শক্তিশালী হওয়া উচিত : কৃষ্ণগহুর (black hole) এবং বৃহৎ বিশ্বেদারণ (big bang)। এই রকম শক্তিশালী ক্ষেত্রগুলিতে কোয়ান্টাম বলবিদ্যার অভিক্রিয়ার গুরুত্ব থাকা উচিত। এক অর্থে চিরায়ত ব্যাপক অপেক্ষবাদ অসীম ঘনত্বের (infinite density) বিন্দু সম্পর্কে ভবিষ্যন্ত্রাণী করে নিজেরই পতন সম্পর্কে ভবিষ্যন্ত্রাণী করেছে, ঠিক তেমনি দিবায়কে বলবিদ্যা (অর্থাৎ যে বলবিদ্যা কোয়ান্টাম নয়) পরমাণ চপদে অসীম থনত প্রাপ্ত

অনিশ্চয়তাবাদ 99

হবৈ এই ভিবিষাদ্বাণী করে নিজের পতন সম্পর্কে ভবিষাদ্বাণী করেছে। ব্যাপক অপেক্ষবাদ এবং কোয়ান্টাম বলবিদ্যাকে ঐক্যবদ্ধ করে এরকম সঙ্গতিপূর্ণ সম্পূর্ণ একটি তত্ত্ব এখনো আমাদের নেই, কিন্তু সে তত্ত্বের অবয়ব কি রকম হবে সে সম্পর্কে আমাদের কিছু কিছু জানা আছে। কৃষ্ণগহুর এবং বৃহৎ বিস্ফোরণ সাপেক্ষ এইগুলির ফলক্রতি নিয়ে আমরা পরের অধ্যায়গুলিতে আলোচনা করব। আপাতত আমরা ইদানীং প্রকৃতির অন্যান্য বলগুলিকে একক ঐক্যবদ্ধ কোয়ান্টাম তত্ত্বে বুঝবার যে আধুনিক প্রচেষ্টাগুলি হয়েছে, দৃষ্টিপাত করব সেই দিকে।

laintemet

মৌলকণা এবং প্রাকৃতিক বল

(Elementary Particles and the Forces of Nature)

আরিষ্টোটলের বিশ্বাস ছিল ব্রন্ধাণ্ডের সমস্ত পদার্থ চারটি মৌলিক উপাদান দিয়ে গঠিত।
ক্ষিতি (carth), মকং (air), অগ্নি (fire) এবং অপ্ (water)। এই উপাদানগুলির উপরে
দুটি বল ক্রিয়াশীল: মহাকর্ষ- ক্ষিতি এবং অপের ভূবে যাবার প্রবণতা এবং লযুত্ব- মরুৎ
এবং অগ্নির উপরে ওঠার প্রবণতা। মহাবিশ্বের উপাদানগুলিকে পদার্থ এবং বলে বিভাজন
আজও ব্যবহার করা হয়।

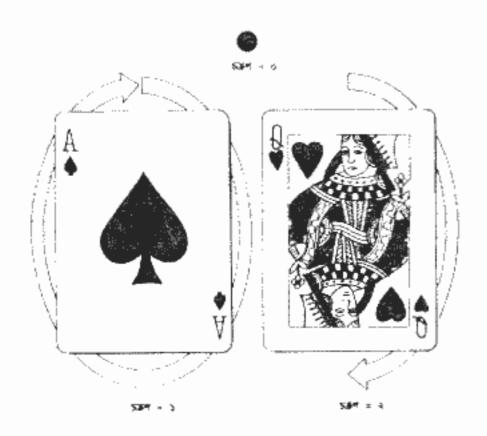
আরিষ্টোটলের বিশ্বাস ছিল পদার্থ অবিচ্ছিন্ন, অর্থাৎ পদার্থের একটা টুকরোকে ক্ষুদ্রতর এবং ক্ষুদ্রতর অংশে ভাগ করা সন্তব। এই ভাগ করার কোনো সীমা নেই। এমন কোনো পদার্থ কণিকা পাওয়া সন্তব নয় যাকে ভাগ করা য়য়য় না। ভেমোক্রিটাসের মতো দৃ-একজন প্রীক কিন্তু বিশ্বাস করতেন, পদার্থ জন্মগত ভাবেই দানাদার (grainy) এবং সমস্ত পদার্থই বহু সংখাক নানা ধরনের পরমাণু দিয়ে গঠিত [প্রীক ভাষায় পরমাণু (atom) শন্দের অর্থ "অবিভাজা"] এই ছন্দ্র শতাব্দীর পর শতাব্দী ধরে চলেছিল। তবে কোনো পক্ষেই কোনো বাস্তব সাক্ষ্য পাওয়া য়য় নি। কিন্তু ১৮০৩ সালে ব্রিটিশ রাসায়নিক এবং পদার্থবিদ জন ডালটন (John Dalton) দেখালেন, রাসায়নিক য়ৌগগুলি (chemical compound) সব সময়েই একটি বিশেষ অনুপাতে মিপ্রণের ফলে হয়। এ তথ্য দিয়ে ব্যাখ্যা করা য়য় পরমাণুগুলির বিশেষ বিশেষ এককে গোষ্ঠীবদ্ধ হওয়া। এগুলির নাম তিনি দিয়েছিলেন অণু। কিন্তু, এই শতাব্দীর প্রথম দিকটা পর্যন্ত চিন্তাধারার এই দৃটি দলের যুক্তি তর্কের পরমাণুবদীদের সপক্ষে চরম মীমাংসা হয় নি। একটি গুরুত্বপূর্ণ ভৌত সাক্ষ্য উপস্থিত করেছিলেন আইনস্টাইন। বিশিষ্ট অপেক্ষবাদ সম্পর্কীয় বিখ্যাত গবেষণাপত্র প্রকাশের কয়েক সপ্তাহ আগে ১৯০৫ সালে তিনি

দেখিয়েছিলেন ব্রাউনীয় গতিকে একটি তরল পদার্থের অণুগুলির সঙ্গে ধুলিকণার সংঘর্ষ নিম্নে ব্যাখ্যা করা যায়। একটি তরল পদার্থে ভাসমান ক্ষুদ্র ক্ষুদ্র ধূলিকণার এলোমেলো এবং অনিয়মিত গতিকে বলা হয় ব্রাউনীয় গতি।

এই প্রমাণুত্রলি আসলে অবিভাজা নয়— এর ভিতরেই এই সন্দেহ হওয়া শুরু হয়েছিল।
ক্ষেত্রক বছর আগে কেন্ত্রিজের ট্রিনিটি কলেজের জে. জে. টমসন (J.J. Thomson) নামে
একজন ফেলো ইলেকট্রন নামক একটি ক্ষুদ্র পদার্থকণার অস্তিত্ব প্রদর্শন করেছিলেন। এই
কণার ভর লঘুতম পরমাণুর ভরের এক সহস্রাহশের চাইতেও কম। তিনি আধুনিক টি.ভি.র
পিকচাব টিউবের মতো একটা যন্ত্র ব্যবহার করেছিলেন। উত্তাপে রক্তবর্ণ একটি ধাতব ফিলামেন্ট
থেকে ইলেকট্রন নির্গত হয়। যেহেতু ইলেকট্রনগুলির আধান অপরা (negative) সেইজনা
একটা ফস্ফরাস মাধানো পর্দার অভিমুখে তাদের ত্বরণ সৃষ্টি করার জনঃ একটা বৈদ্যুতিক
ক্ষেত্র ব্যবহার করা থেও। ইলেকট্রনগুলি পর্দায় আঘাত করলে আলোর ঝলক সৃষ্টি হোত।
অনতিবিলয়েই বোঝা গিয়েছিল ইলেকট্রনগুলি নিশ্চয়ই নির্গত হয় পরমাণুগুলির ভিতর থেকে।
শেষ পর্যন্ত রিটিশ পদার্থবিদ আনেষ্ট বাদারফোর্ড (Ernest Rutherford) ১৯১১ সালে
দেখাতে সমর্থ হন— পরমাণুগুলিরও একটি আভ্যন্তরীণ গঠন আছে। তাদের গঠনে রয়েছে
পরা (positive) আধান সম্পন্ন একটি কেন্দ্রক (nucleus)। তার চতুম্পার্শ্বে আবর্তিত হচ্ছে
কতগুলি ইলেকট্রন। তেজন্ত্রিয় পরমাণুগুলি থেকে বিকিরিত পরা আধান সম্পন্ন ও (আলফা)
কণিকাগুলির পরমাণুর সঙ্গে সংঘর্ষ হলে তাদের গতিপথে যে বিচুতি হয় সেটা বিচার করেই
তিনি এই সিদ্ধান্তে এসেছিলেন।

প্রথমে মনে হয়েছিল পরমাণুর কেন্দ্রক একাধিক ইলেকট্রন এবং বিভিন্ন সংখ্যক পরা আধান ফুক্ত কণিকার দ্বারা গঠিত। এগুলির নাম দেওয়া হয়েছিল প্রোটন। আসলে প্রীক শব্দ প্রোটসের অর্থ প্রথম। কারণ তখন বিশ্বাস ছিল এগুলিই বন্ধ গঠনের মূলগত একক। কিন্তু ১৯৩২ সালে কেন্ত্রিজে রাদারফার্ডের সহক্ষী জেমস্ চ্যাড়উইক (James Chadwick) আবিস্তার করলেন কেন্ত্রকে আর একটি ক্লাও থাকে তার নাম নিউটুন। এর ভর প্রোটনের মতোই কিন্তু এর কোনো বৈদ্যুতিক আধান নেই। এই আবিষ্কারের জনা চ্যাড়উইক নোবেল পুরস্কার পান এবং কেমব্রিজের গন্তিল ও কাইয়াস কলেজের মাস্টার নির্বাচিত হন (আমি এখন এই কলেজের ফেলো)। পরে তিনি মাস্টার পদ ত্যাগ করেন। এর কারণ, ফেলোদের সঙ্গে তাঁর মতানৈকা ঘটে। যুদ্ধের পর একদল তরুণ ফেলো ফিরে এসে অনেক প্রাচীন ফেলোর বিরুদ্ধে ভাট দিয়ে তাঁদের কলেজ থেকে বহিদ্ধৃত করেন। এই পুরানো ফেলোরা কছদিন কলেজের অনেক পদ অধিকার করে ছিলেন। এই ঘটনা নিয়ে কলেজে তিক্ত দ্বন্দ্ব সৃষ্টি হয়েছিল আমার আসার আগোর আগোর আরি এ কলেজে যোগদান করি এ বিবাদের একেবারে শেষ দিকে ১৯৬৫ সালে। তখন এই ধরনের মতানৈক্যের জনা আর একজন নোবেল পুরস্কার বিজয়ী বিজ্ঞানী স্যার নেতিল মট (Sir Nevill Mott) পদত্যাগ করতে বাধা হন।

বছর কৃতি আগে পর্যন্ত মনে হয়েছিল প্রোটন এবং নিউট্রনই "মৌল কণা" (elementary particle)। কিন্তু কতগুলি পরীক্ষায় প্রোটনের সঙ্গে প্রোটনের সংঘর্ষ ঘটানো হয়। কিন্তা সংঘর্ষ ঘটানো হয়। কিন্তা সংঘর্ষ ঘটানো হয় দ্রুতগামী ইলেকট্রনের সঙ্গে। প্রোটনের এই পরীক্ষাগুলি থেকে নির্দেশ পাওয়া


যায় আসলে এগুলিও ক্ষুদ্রতর কণা দ্বারা গঠিত। ক্যালটেক পদার্থবিদ মারে গেলম্যান (Murray Gell-Mann) এই কণাগুলির নাম দেন কার্ক ((quark)। এই গ্রেষণার জন্য তিনি ১৯৬৯ সালে নোবেল প্রাইজ পান। এ নামের উৎপত্তি হয় জ্যেস জয়েসের একটা হেঁয়ালী কবিতা "Three quarks for Muster Mark!" খেকে। কার্ক শব্দের উচ্চারণ হওয়া উচিত quart-এর মতো, তবে শেষে 1-এর বদলে k হবে কিন্তু সাধারণত উচ্চারণ করা হয় লার্কের মতো।

কার্ক অনেক রক্ষের আছে। মনে হয় কার্ক রয়েছে অন্তত ছটি সুগদ্ধের (flavour)। এগুলির নাম নিচু (down), অজানা (strange), মোহিত (charmed), সবার নিচে (bottom) এবং সবার উপরে (top)। প্রতিটি সুগদ্ধেরই আবার তিনটি রঙ (colour): লাল, সবুজ, নীল (জোরালো ভাবে বলা উচিত, এই শব্দগুলি শুধুমান্র নাম। কার্কের আকার দৃশামান আলোকের তরঙ্গদৈর্ঘোর চাইতে অনেক ছোট। সূতরাং স্বাভাবিক অর্থে যাদের রঙ বলা হয় সেরকম কিছু তাদের নেই। এ শব্দগুলির একটিই অর্থ: আধুনিক পদার্থবিদরা নতুন কণিকা এবং পরিঘটনার নামকরণে অনেক বেশী কল্পনাশক্তির অধিকারী। তাঁরা শুধুমান্র শ্রীক শব্দে আবদ্ধ থাকেন না!) প্রতিটি প্রোটন কিস্থা নিউট্টন তিনটি কার্ক দিয়ে গঠিত। প্রতিটির এক একটি রঙ। একটা প্রোটনে রয়েছে দুটি উচু কার্ক (up quark) এবং একটা নিচু কার্ক (down)। নিউটনে রয়েছে দুটি উচু কার্ক (up quark) এবং একটা নিচু কার্ক (down)। নিউটনে রয়েছে দুটি নিচু (down) কার্ক আর একটি উচু কার্ক। অন্য কার্ক দিয়েও আমরা কণিকা বানাতে পারি। অজানা (strange), যোহিত (charmed), সবার নিচে (bottom) এবং সবার উপরে (top)। কিস্ত এ সবগুলিরই তর অনেক বেশী এবং দ্রুত অবক্ষয় হয়ে তারা প্রোটনে এবং নিউটনে পরিণত হয়।

এখন আমরা জানি পরমাণু কিন্তা তাদের ভিতরকার প্রোটন নিউট্রন কোনোটাই অবিভাজা নয়। সূতরাং প্রার হল, সত্যিকারের মৌল কণা অর্থাৎ যা দিয়ে সমস্ত জিনিষ তৈরী হয়েছে সেগুলি কি ? আলোকের তরঙ্গদৈর্ঘ্য একটি প্রমাণুর আকারের চাইতে অনেক বড়। সূতরাং সাধারণভাবে পরমাণু দেখার কোনো আশাই নেই। অতএব আমানের প্রয়োজন তার চাইতেও অনেক ক্ষুদ্র তরঙ্গদৈর্ঘা সম্পন্ন কিছু। আগের অধ্যায়ে আমরা দেখেছি কোলাগাম কলবিনার মতে সমস্ত কণাই আসলে তরঙ্গ এবং শক্তি যত বেশী অনুরূপ তরঙ্গ তত ছোট। সূতরাং আমাদের প্রশ্নের সব চাইতে ভাল উত্তর হল, কতটা কণিকাশক্তি (particle energy) আমাদের হাতে আছে। তার কারণ তার উপরে নির্ভর করবে কতটা ক্ষুদ্রমানের দৈর্ঘ্য আমরা দেখতে পাব। এই কণিকা শক্তি মাপনের সাধারণ এককের নাম ইলেকট্রন ভোল্ট (উমসনের ইলেকট্রন নিয়ে পরীক্ষাতে আমরা দেখেছি তিনি ইলেকট্রনের ত্বপের জন্য বৈদ্যুতিক ক্ষেত্র বাবহার করেছিলেন। এক ভোপেটর একটি কৈনুতিক ক্ষেত্র থেকে একটা ইলেকট্রন যে শক্তি সংগ্রহ করে তাকে বলে এক ইলেকটুন ভোলী)। উনবিংশ শতাব্দীতে যে কণিকাশক্তির বাবহার জ্ঞানা ছিল সেটা হল, আগুন জ্ঞালার সময় কিন্তা ঐ রকম কোনো রাসায়নিক জিলার সময় উদ্ধৃত কয়েকটি ইলেকটুন ভোপট মাত্র। ওখন যনে করা হোত, শরমাণুই ক্ষুদ্রতম একক। রাদারফোর্ডের পরীক্ষাতে 🚈 (আঙ্গফা) কণিকাগুলির শক্তি ছিল বহু মিলিয়ান ইলেকট্রন ভোগ্ট। আরো আচুনিক কালে আমরা শিখেছি কি করে বিদ্যুৎ-চুম্বক ক্ষেত্রের সাহায়ো কণিকাগুলিকে **প্রথমে করে**ক মিলিয়ান ইলেকট্রন ভো**ল্ট** শক্তি দান করা যায় এবং তারপর দান করা যায়

হাজার হাজার মিলিয়ান ভোল্ট শক্তি। এভাবেই আমরা জানতে শেরেছি কৃষ্টি বছর আর্টো যেগুলিকে মৌলকণা ভাবা হোত, সেগুলিও ক্ষুত্রতর কণা দ্বরো গঠিত। আমরা যদি উচ্চতর শক্তিতে পৌঁছাই, তাহলে কি দেখা যাবে এই কণাগুলি আৱেং ক্ষুদ্ৰ কণিকা দ্বারা গঠিত? এটা নিশ্চয়ই সম্ভব। কিছু আমাদের সভাসতাই এমন কিছু তাত্ত্বিক যুক্তি রয়েছে, যার দরুন আমরা বিশ্বাস করতে পারি যে প্রকৃতির গঠনের অন্তিম যৌলকণা সম্পর্কে আমরা জেনেছি কিন্তা জানার অতান্ত কাছাকাছি এসে পড়েছি।

আগের অধ্যায়ে আমরা যে তরঙ্গ কণিকা ছৈততা সম্পর্কে আলোচনা করেছি, তার সাহায্যে আলোক এবং মহাকর্ষ সমেত মহাবিশ্বের সব কিছুই কণিকার বাথিখিতে প্রকাশ করা যায়। এই কণিকাগুলির একটি ধর্মের নাম চক্রণ (spin)। চক্রণ সম্পর্কে ভাববার একটি পদ্ধতি হল এগুলিকে এক একটি অক্ষে (axis) ঘূর্ণায়মান লাটিম ভাবা। এতে কিন্তু ভূল হতে পারে, কারণ কোয়াশ্টাম বলবিদ্যা আমাদের বলে কণিকাগুলির কোনো সুসংজ্ঞিত (well-defined) অক্ষ নেই। একটি কণিকার চক্রণ বলতে বাস্তবে যা বোঝায় সেটা হল বিভিন্ন অভিমুখ থেকে সেটা কি রকম দেখায়। একটি কণিকার চক্রন (spin) যদি শুন্য হয় তাহলে

চিক্র ৫.১

সেটা একটা বিন্দুর মতো: যে কোনো দিক থেকে সেটা একই রকম দেখাবে (চিত্র ৫.১-i)। কণিকার হক্রণ ১ হলে সেটা একটা তীরের মতো, এক এক দিক থেকে সেটা দেখতে এক এক রকম (চিত্র ৫.১-ii)। শুধুমাত্র ধদি পূর্ণভাবে আবর্তিত (৩৬০ ডিগ্রী) হয়, তা হলেই ্কুশাট্টিকৈ এক রকম দেখাবে। দুই চক্রণ বিশিষ্ট কণিকা একটি দুমুখী তীরের মতো (চিত্র ৫.১-iii), অর্ধবৃত্ত পথে আবর্তিত হলে (১৮০ ডিগ্রী) সেটাকে এক রকম দেখাবে। একইভাবে উচ্চতর চক্রনবিশিষ্ট কণিকাগুলিকে একই রকম দেখাবে, যদি সেগুলিকে পূর্ণ আবর্তনের ক্ষুদ্রতর ভন্নাংশ পরিমাণ ঘোরানো যায়। এই পর্যন্ত ব্যাপারটা সহজ্ববোধা (fairly straight forward) কিন্তু উল্লেখযোগ্য ব্যাপ্যর হল, এমন অনেক মৌলকণা আছে, যেগুলিকে ঠিক একটি আবর্তনে এক রকম (look the same) দেখায় না। সেগুলিকে এক রকম দেখায় দৃটি আবর্তনে। বলা হয় এই মৌল কণাগুলির চক্রণ অর্থেক (🛬) :

মহাবিশ্বের সমস্ত জানিত কণিকাগুলিকে দুই গ্রেষ্টীতে ভাগ করা যায় : যে সমস্ত কণিকার চ্চাল (spin) অর্থেক, পৃথিবীর সমস্ত পদার্থই সেই কণিকাগুলি দিয়ে গঠিত এবং যে সমস্ত কণিকার চক্রণ (spin) ০, ১ এবং ২, আমরা দেখতে পাব সেগুলি দিয়েই পদার্থকণিকার অন্তর্বতী বল তৈরী হয়। পদার্থ কণাগুলি পাউলির অপবর্জন নীতি (Pauli's exclusion principle) নামক নীতি মেনে চলে। এ নীতি ১৯২৫ সালে অষ্ট্রীয় পদার্থবিদ উল্ফ্গ্যান্ড পাউলি (Wolfgang Pauli) আবিষ্কার করেন। এ আবিষ্কারের জন্য তিনি ১৯৪৫ সালে নোবেল প্রাইজ পেয়েছিলেন। তিনি ছিলেন তাত্ত্বিক পদার্থবিদদের হল আদর্শ (archetypal)। তাব সম্পর্কে কথিত আছে, এমন কি একই শহরে তার উপস্থিতিও বৈজ্ঞানিক পরীক্ষাগুলিকে গোলমাল করিয়ে দিত। পাউন্সির অপবর্জন নীতির বস্তুন্তা: দৃটি সমরূপ (similar) কণা একই অবস্থায় থাকতে পারে না। অর্থাৎ অনিশ্চয়তাবাদ অনুমোদিত সীমার ভিতরে দুটি কণারই একই অবস্থান এবং একই গতিবেগ থাকতে পারে না। অপবর্জন নীতি বিনিশ্চায়ক (crucial)। কারণ: চক্রণ ০.১ এবং ২ বিশিষ্ট কণাগুলি দ্বারা সৃষ্ট বলের প্রভাবে পদার্থগুলি কেন চুপ্সে অতাস্থ ঘন অবস্থায় পৌঁছায় না, অপবর্জন মীতি সেটা ব্যাখ্যা করে। পদার্থ কণাগুলির অবস্থান অত্যন্ত সন্নিকট হলে তাদের গতিবেগে পার্থকা থাকবেই। এর অর্থ হবে কণাগুলি একই অবস্থায় বেশী ক্ষণ থাকবে না। পৃথিবী যদি অপবর্জন নীতি ছাড়া সৃষ্ট হোত, তা হলে কার্কগুলি বিচ্ছিন্ন সুসংজ্ঞিত প্রোটন এবং নিউট্রন গঠন করত না। আবার এগুলিও ইলেকট্রন সহযোগে বিচ্ছিন্ন সুসংজ্ঞিত পরমাণু গঠন করতে পারত না। তারা সবাই চুপ্সে মোটামূটি এক রকম ঘন একটি "সুপ" (soup) তৈরী করত।

ইলেকট্রন এবং অর্থেক চফ্রণ বিশিষ্ট কণিকাগুলি সম্পর্কে ১৯২৮ সালের আগে সঠিক উপলব্ধি হয় নি। সে বছরে পল ডিরাক্ (Paul Dirac) একটি তত্ত্ব উপস্থিত করেন। তিনি পরে কেম্ব্রিছে গণিতশাশ্রের প্রকেসিয়ান (Lucasian) অধ্যাপক নির্বাচিত হন (এক সময় নিউটন এই অধ্যাপক পদে ছিলেন এবং এই পদে এখন আমি রয়েছি) ৷ ডিরাক-এর তত্ত্বই এই ধরনের প্রথম তত্ত্ব যার সঙ্গে কোয়ান্টাম বলবিদ্যা এবং বিশিষ্ট অংশক্ষবাদের সঙ্গতি রয়েছে। ইলেকট্রনের কেন অর্ধেক চক্রশ রয়েছে এবং সম্পূর্ণ একটি আবর্তনে তাকে কেন একই রকম দেখায় না, অথচ দৃটি আবর্তনে দেখায়— এই প্রশ্নগুলি ডিরাকের তত্ত্ব গাণিতিকভাবে ব্যাখ্যা করেছে: এই তন্তু আর একটি ভবিষাদ্বাণী করে: ইলেকট্রনের নিশ্চয়ই একটি জুড়ি থাকবে। অর্থাৎ থাকবে একটি বিপরীত ইলেকট্রন (anti-electron) কিয়া পজিট্রন। ১৯৩২ সালে পঞ্জিট্রন আবিষ্ণুত হয় : ফলে ডিরাকের তত্ত্বের সভ্যতা প্রমাণিত হয় : এই আবিষ্কার

১৯৩৩ সালে ভিরাকের নোবেল পুরস্কার প্রান্তির পথিকৃৎ। আমরা এখন জানি প্রতিটি কণিকারই একটি বিশরীত-কণিকা (anti-particle) আছে। তার সঙ্গে কণিকাটি বিনাশপ্রাপ্ত (annhilated) হতে পারে (বলবাহী কণাগুলির ক্ষেত্রে বিপরীত কণিকা এবং কণিকাটি অভিন্ন)। বিপরীত কৃপিকার দ্বারা গঠিত বিপরীত-পৃথিবী একং বিপরীত মানুষও থাকতে পারে। কিন্তু আপনার বিপরীত সম্ভার সঙ্গে দেখা হলে তার সঙ্গে করমর্দন করবেন না ৷ তা করলে আপনারা দুজনেই একটা বিরাট আলোর ঝলকে মিলিয়ে যাবেন। বিশরীত কণিকার তুলনায় সাধারণ কণিকাগুলির সংখ্যা এত বেশী মনে হয় কেন? এ প্রশ্ন খুবই গুরুত্বপূর্ণ। এই অধ্যায়ের শেষে আমি সে প্রপ্রে ফিরে আসব।

কোয়াটাম কারিদায় অনুমান করা হয়-পদার্থ কণিকাগুলির অন্তর্বতী বল কিয়া পারুম্পরিক প্রতিক্রিয়াগুলি পূর্ণসংখ্যায় চক্রম (spin) বিশিষ্ট কণা দ্বারা বাহিত হয়। যেমন--০, ১ একং ২। আসলে যা ঘটে তা হল: ইলেকট্রন কিয়া কার্কের মতো একটা পদার্থ কণিকা একটি বলবাহী কণিকা নিক্ষেপ করে। এই নিক্ষেপে (emission) যে প্রত্যাগতি (recoil) হয়, তার ফলে পদার্থ কণাটির গতিবেগের পরিবর্তন হয়। বলবাহী কণিকাটির সঙ্গে তখন অন্য একটি পদার্থ কশিকার সংঘর্ষ হয়। ফলে বলবাহী কণিকাটি বিশোষিত হয় (absorbed)। এই সংঘর্ষের ফলে দ্বিতীয় কণিকাটির গতিবেগের পরিবর্তন হয়, ঠিক যেন দুটি পদার্থ কণিকার ভিতরে একটি অস্তর্বতী বল ছিল।

বলবাহী কণিকাগুলির একটি গুরুত্বপূর্ণ ধর্ম হল, তারা অপবর্জন নীতি যানে না (exclusion principle)। এর অর্থ হল কতগুলি কণিকার বিনিময় হবে তার সংখ্যার কোনো সীমা নেই। সুতরাং তা খেকে একটি শক্তিশালী বল উৎপন্ন হতে পারে। কিন্তু বলবাহী কণিকাগুলির ভর বেশী হলে, সেগুলি তৈরী করা (produce) একং বেশী দূরত্বে বিনিময় করা (exchange) খুব কঠিন হবে। সূতরাং তারা যে বল বহন করবে তার পাল্লা (range) হবে কম। অন্যদিকে যদি বলবাহী কণিকাগুলির নিজস্ব কোনো ভর না থাকে তাইলে বলগুলির পাল্লা (range) হবে বেশী। বলা হয় কণিকাগুলির অন্তর্বতী যে বলবাহী কণিকাগুলির বিনিময় হয় সেগুলি কল্লিড (virtual) কণিকা। কারণ কণিকা অভিজ্ঞাপক যন্ত্রে ডাদের "বাস্তব (real)" কণিকার মতো প্রভাক্ষভাবে সনাক্ত করা থায় না। কিছ তাদের অক্তিত্ব আমরা জানতে পারি। তার কারণ, তাদের একটা মাপন্যোগা অভিক্রিয়া রয়েছে। তারা পদার্থ কণিকাগুলির অন্তর্বতী কা সৃষ্টি করে। কোনো কোনো অবস্থায় ০.১ কিয়া ২ চক্রণ (spin) বিশিষ্ট কণাগুলি বাস্তব ক্ষিকারূপে বিদ্যমান থাকে। তখন তাদের প্রত্যক্ষভাবে সনাক্ষ কথা সম্ভব। চিরায়ত পদার্থবিদ্যায় যাকে তরক্ষ বলে ঐ কণিকাগুলিকৈ তখন আমাদের সেই রকমই মনে হবে: যেমন, আলোক তরঙ্গ কিয়া মহাকর্মীয় তরঙ্গ। পদার্থ কণিকান্তলি কল্পিত (virtual) বলবাহী কণিকা বিনিময় দ্বারা যখন পারস্পরিক প্রতিত্রিন্যায় লিপ্ত হয় সেই সময় ওগুলি (অর্থাৎ ০, ১ কিম্বা ২ হক্রণ সম্পর বাস্তব কণিকা-অনুবাদক) নির্গত হতে পারে। (উদাহরণ: দুটি ইলেকট্রনের भधावकी देवनुष्ठिक विकर्मन वरमत कावन मृष्टि कञ्चिक क्यांक विनिभयः। এই दमारिनश्रमिक কখনোই প্রত্যক্ষভাবে সনাক্ত করা যায় না। কিছু একটি ইপেকট্রন যদি আর একটিকে অভিক্রম

কুরে ভাুছুলে বাস্তব ফোটনও নিক্ষিপ্ত হতে পারে, সেগুলিকেই আমরা আলোক তরক্ষ বলে সনাক্ত করতে পারি)।

মৌলকণা এবং প্রাকৃতিক বল

বাহিত বলের শক্তি এবং যে সমস্ত কণিকার সঙ্গে তাদের প্রতিক্রিয়া হয় সেই অনুসারে ধলবাহী কণিকাগুলিকে চারটি শ্রেণীতে বিভক্ত করা যায়। একট জেরের সঙ্গেই বলা উচিত: এই চারটি শ্রেণীতে বিভাগ মনুষ্যকৃত। আংশিক তত্ত্ব গঠন করতে গেলে এই রকম বিভাজনে সুবিধা হয় কিন্তু গভীরতর কিছুর অনুরূপ এই বিভান্ধন নাও হতে পারে। অধিকাংশ **পদার্থবিদেরই** আশা তাঁরা শেষ পর্যন্ত এমন একটা ঐকাবদ্ধ তত্ত্ব আবিষ্ঠার করবেন, যার সাহায্যে কলের বিভিন্ন দিক রূপে চারটি বলকে ব্যাখ্যা করা যাবে। আসলে অনেকেই বলবেন আজকের পদার্থবিদ্যার প্রধান লক্ষ্য এটাই। ইদানীং চারটি বগের ভিতরে তিনটি বলকে ঐকাবদ্ধ করার সফল প্রচেষ্টা হয়েছে। এ অধ্যায়ে আমি সে প্রচেষ্টাগুলির বিররণ দেব। অবশিষ্ট শ্রেণীকে অর্থাৎ মহাকর্ষকে ঐক্যবদ্ধ করার প্রশ্ন আমি পরবর্তী কালের জন্য রেখে দেব।

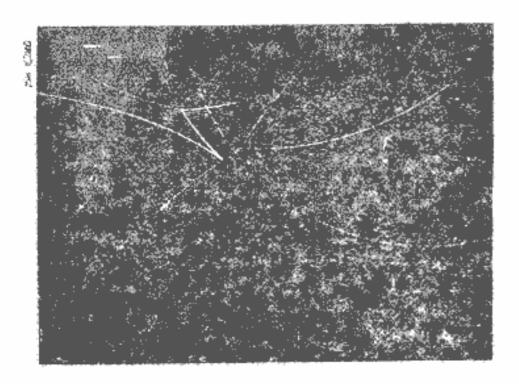
প্রথম শ্রেণী হল মহাক্ষীয় বল। এই বল মহাবিশ্ববাপী অর্থাৎ প্রতিটি কণিকাই তার নিজস্ব ভর কিন্তা শক্তি অনুসারে মহাকধীয় বল বোধ করে। চাবটি বলের ভিতরে **মহাকধী**য় বল দুর্বলতম এবং এবিষয়ে অনা বলগুলির সঙ্গে তার পার্থকা অনেকটা (by a long way)। এই বল এত দুর্বল যে দৃটি বিশেষ ধর্ম না থাকলে এ বল আমাদের নজরেই আসত না। সে দৃটি হল: বহু দূরত্তে এ বল ক্রিয়া করতে পারে এবং এ বল সব সময়েই আকর্ষণ করে। এর অর্থ : একটি বৃহৎ বস্তপিত্তের অন্তর্বতী একক কণিকাগুলির অতান্ত দুর্বল মহাকষীয় বল সংযুক্ত হয়ে একটি লক্ষণীয় বল উৎপাদন করতে পারে। উদাহরণ: পৃথিবী এবং সূর্য। অন্য তিনটি বলগুলির হয় পাপ্লা (range) ছোট কিয়া কখনো তারা আকর্ষণকারী, কখনো তারা বিকর্ষণকারী। সূতরাং তাদের পরস্পরকে বাতিল করার প্রবণতা রয়েছে। কোয়ান্টাম কলবিদ্যার দৃষ্টিভঙ্গিতে, মহাক্ষীয় ক্ষেত্রে দৃটি পদার্থ কণার অন্তর্বতী বল বহন করে গ্র্যান্ডিটন (graviton) নামক দৃটি চক্রণ (spin) বিশিষ্ট একটি কণিকা, এই কণিকার নিজস্ব কোনো ভর নেই, সে জন্য সে যে বল বহন করে তার পাল্লা দীর্ঘ। বলা হয়: সূর্য এবং পৃথিবীর অন্তর্বতী মহাক্ষীয় বল পারস্পরিক গ্রাভিটন (graviton)বিনিময় থেকে উদ্ভূত। এই কণিকাগুলি যদিও কল্লিত (virtual) তবুও তারা নিশ্চিতভাবে একটি মাপনযোগ্য ক্রিয়ার সৃষ্টি করে। তারা পৃথিবীকে সূর্য প্রদক্ষিণ করায়। চিরায়ত পদার্থবিদরা যাকে মহাক্ষীয় তরঙ্গ বলতেন, সেগুলি আসলে বাস্তব গ্রাভিটন (graviton)। মহাকর্ষীয় তরঙ্গগুলি পুব দুর্বল। সেগুলি সনাক্ত করা এত কঠিন যে কখনোই সেগুলিকে পর্যবেক্ষণ করা যায় নি ।

পরের ভোগীর নাম বিদ্যুৎ-চুম্বকীয় বল। এই বলের ইলেকট্রন এবং কার্কের (quark) মতো বৈদ্যতিক আধান বিশিষ্ট কণিকার সঙ্গে পারস্পরিক ক্রিয়া হয় কিন্ত গ্রাভিটনের (graviton) মতো আধান বিহীন কণিকার সঙ্গে কোনো পারস্পরিক ক্রিয়া হয় না। দৃটি ইলেকট্রনের অস্তর্বতী বিদাৎ-চম্বকীয় বল মহাক্ষীয় বলের চাইতে মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান (একের পিঠে বিয়াঞ্জিশটা শূনা) গুণ শক্তিশালী। কৈদ্যুতিক আধান কিন্তু দু রকমের পরা (positive) এবং অপরা (negative) । দুটি পরা আধানের অন্তর্বতী বল বিকর্ষণকারী তেমনি দৃটি অপরা (negative) আধানের অন্তর্বতী বল বিকর্ষণকারী। কিন্তু একটি

পরা এবং একটি অপরা আধানের অন্তর্বতী বল আকর্ষণকরি। সূর্য ক্রি**শ্র**িশৃথিবীর *মি*রো একটি বৃহৎ বস্তুপিত্তে প্রায় সম সংখ্যক পরা এবং অপরা আধান রয়েছে। সূতরাং একক বন্তুপিশুগুলির অন্তর্বতী আকর্ষণকারী এবং বিকর্ষণকারী বলগুলি পরস্পর্কে প্রায় বাতিল করে দেয় ফলে অবশিষ্ট (net) বিদ্যুৎ-চুম্বকীয় বল থাকে সামানাই। কিন্তু অণু শরমাণুর মতো কুন্তু মাত্রার ক্ষেত্রে বিদাৎ - চুম্বকীয় বলের প্রাধান্য থাকে। অপরা আধান বিশিষ্ট ইলেকটুন এবং পরা আধান বিশিষ্ট কেন্দ্রকের (nucleus) অন্তর্বতী আকর্ষণই ইলেকট্রনকে পর্য্যাপুর কেন্দ্রকে প্রদক্ষিণ করায়। ব্যাপারটা পৃথিবীকে যে রকম মহাক্ষীয় বল সূর্যকৈ প্রদক্ষিণ করায় সেই রকম। বিদাৎ-চুম্বকীয় আকর্ষণকে মনে করা হয় ফোটন নামক ভরহীন কল্পিত (virtual) এক চক্রণ (spin) বিশিষ্ট বহু সংখ্যক কণিকার বিনিময়ের ফলপ্রান্তি। যে সমস্ত ফোটন বিনিময় হয় সেগুলি কিন্তু কল্লিত কণিকা²। কিন্তু যথন একটি ইলেকট্ৰন একটি অনুমোদিত কক্ষ থেকে কেন্দ্রকের নিকটতর অন্য একটি কক্ষে গমন করে তখন শক্তি মৃক্ত হয় এবং একটি বাস্তব ফোটন নিগত হয়। যদি তার তরঙ্গদৈর্ঘ্য সঠিক থাকে তা হলে সেটা মানুষের চোরে ধরা পড়ে। এছাড়া দেখা যায় ফোটোগ্রাফের ফিল্মের মতো কোনো ফোটন অভিজ্ঞাপক যশ্তের সাহায্যে। সেই রকম একটি বাস্তব ফোটনের সঙ্গে একটি পরমাণুর সংঘর্ষ হলে একটি ইলেকট্রনকে কৈন্দ্রকের (nucleus) নিকটতর কক্ষ থেকে একটি দূরতর কক্ষে সরিয়ে নিতে শারে। ফলে ফোটনের শক্তি নাবহুত হয় সূতরাং সে বিশোষিত হয়।

তৃতীয় শ্রেণীর নাম দুর্বল কেন্দ্রকীয় বল (weak nuclear force)। তেজজ্বিয়তার কারণ এই বল। অর্থেক চক্রণ বিশিষ্ট সমস্ত পদার্থ কণিকার উপরই এই বল ক্রিয়া করে কিন্তু ফোটন কিন্তা গ্রাভিটনের মতো ০,১ কিন্তা ২ চক্রণ বিশিষ্ট কোনো কণিকার উপরে ক্রিয়া করে না। ১৯৬৭ সাল পর্যন্ত এই দুর্বল কেন্দ্রকীয় বলকে ভাল করে বোঝা যায় নি। সেই সময় লণ্ডনের ইন্পিরিয়াল কলেজের আবদুস সালাম এবং হার্ভার্ডের স্টিভেন উইনবার্গ কয়েকটি তত্ত্ব উপস্থাপন করেন। সেই তত্ত্বগুলি এই পারম্পরিক প্রতিক্রিয়াকে (interaction) বিদাহ-চুম্বকীয় বলের সঙ্গের ঐকাবদ্ধ (unified) করে। প্রায় একশ বছর আগে ম্যাক্সওয়েল (Maxwell) বৈদ্যুতিক এবং চুম্বকীয় বলকে এইভাবে ঐকাবদ্ধ করেছিলেন। সালাম এবং উইনবার্গের বক্রব্য ছিল ফোটন ছাড়া আরো তিনটি এক চক্রণ (spin) বিশিষ্ট কণিকার অক্তিম্ব আছে। একত্রে এগুলির নাম (? অধিক ভরমুক্ত) ভেক্টর বোসনস্ (massive vector besons) একলে করেছিলেন করেছিলেন করে। এগুলির নাম W (উচ্চারণ— ডব্লু প্লাস), W (উচ্চারণ— ডব্লু মাইনাস) এবং Z° (উচ্চারণ— জেড্ নট) এবং প্রত্যোকটির ভর প্রায় ১০০ GeV (GeV —এর অর্থ giga-electron-volt কিন্তা এক হাজার মিলিয়ান ইলেকট্রন ভোলট)। উইনবার্গু–সালামের তত্ত্ব একটি ধর্ম প্রদর্শন করে তার নাম স্বতঃস্ফুর্ত প্রতিসামা ভঙ্ম হওয়া (spontaneous symmetry breaking)। এর অর্থ: স্ক্র্য্ন শক্তিতে (at low

ভিন্তিত্বি যে সমস্ত কণিকাগুলিকে সম্পূৰ্ণ তিয় মনে হয় সেগুলি আসলে একই জাতীয় কণিকা, তবে বিভিন্ন অবস্থায়। উচ্চ শক্তিতে (at high energy) এই সমস্ত কণিকার আচরণ সমরূপ। ক্রিয়াটা অনেকটা কলেট (roulette) চক্রে অবস্থিত কলেট বলের আচরণের মতো। উচ্চশক্তিতে (যাখন চক্রটি খুব তাড়াতাড়ি ঘুরছে) বলটির আচরণ মূলত একই রকম। এটা ঘোরে আর ঘোরে। কিন্ত ঘূর্ণন ধীরতর হলে বলের শক্তি কমে যায়। শেষ পর্যন্ত বলটা চাকার ৩৭টি গর্তের ভিতরকার যে কোনো একটা গর্তে পড়ে। অন্য কথায় কম শক্তির ক্রেব্রে বলটি ৩৭টি তাবস্থায় থাকতে পারে। কোনো কারণে যদি আমরা স্বশ্ধ শক্তি সম্পন্ন অবস্থায় বলটিকে পর্যবেক্ষণ করতে পারতাম তা হলে আমরা ভাবতাম ৩৭টি বিভিন্ন ধরনের বল রয়েছে।


উইনবার্গ-সালাম তত্ত্ব অনুসারে ১০০ GeV-এর চাইতে অনেক বেশী উচ্চ শক্তিতে তিনটি নতুন কণিকা এবং ফোটন সবগুলিরই আচরণ হবে এক রকম। কিন্তু অধিকাংশঞ্চাভাবিক অবস্থায় যে স্কল্পতর কণিকাশন্তির সৃষ্টি হয়, সেক্ষেত্রে কণিকাগুলির ভিতরকার প্রতিসামা $\{symmetry\}$ (ভেঙে যাবে। W^+ , W^- , এবং Z° অনেক বেশী ভর যুক্ত হবে ফলে তারা যে বল বছন করে তার শাঁক্লাও (range) অনেক কমে যাবে। সালাম এবং উইনবার্গ যখন এই তত্ত্ব প্রস্তাব করেছিলেন, তথন এই তত্ত্বে বিশ্বাস করেছিলেন খুব কম লোকই। তাছাড়া কণিকা ত্বরণ যন্ত্রন্তালির (particle accelerators) ১০০ GeV শক্তিতে পৌঁছানোর মতো ক্ষমতা ছিল না। W⁺, W⁻, এবং Z° এই সমস্ত বাস্তব কণিকা উৎপন্ন হওয়ার জনা ঐ পরিমাণ শক্তির প্রয়োজন। কিন্তু পরবর্তী প্রায় দশ বছরে স্বল্প শক্তির ক্ষেত্রে এই তত্ত্বের অন্যান্য ভবিষ্যদ্বাণী পরীক্ষামূলক তথ্যের সঙ্গে এত ভালভাবে মিলে যায় যে ১৯৭৯ সালে সালাম এক উইনবার্গকে পদার্থবিদ্যার নোবেল প্রাইজ দেওয়া হয়। তাঁদের সঙ্গে নোবেল প্রাইজ পান হার্ভার্ডের শেল্ডন গ্লাশো (Sheldon Glashow)। তিনিও দুর্বল কেন্দ্রকীয় বল এবং বিদ্যুৎ-চুম্বকীয় বলের একই ধরনের ঐক্যবদ্ধ তত্ত্ব উপস্থিত করেছিলেন। ১৯৮৩ সালে CERN (European Centre for Nuclear Research)-এ ফোটনের তিনটি ভরযুক্ত (massive) অংশীদার আবিষ্কৃত হয়। এই সঙ্গে আবিষ্কৃত হয় ভবিষাদ্বাণীর অনুরূপ তাদের নির্ভুল ভর এবং অন্যান্য ধর্ম। নোবেল কমিটি একটি ভুল করে অপ্রস্তুত হওয়ার দায় থেকে বেঁচে যায়। কয়েক শ' পদার্থবিদের একটি দল এই আবিষ্কার করেন। তাঁদের নেতা ছিলেন কার্লো কবিয়া (Carlo Rubbia)। তিনি ১৯৮৪ সালে নোবেল পুরস্কার পান। এই সঙ্গে নোবেল পুরস্কার পান CERN-এর ইঞ্জিনিয়ার সাইখন জান্ দার মীর(Simon van der Meer) 🕮 তিনি পুরস্কার পান বিপরীত পদার্থ (anti matter) সঞ্চয়ের যে ব্যবস্থা তিনি করেছিলেন সেইজন্য (আজকালকার দিনে আন্তেগ থাকতেই শ্রেষ্ঠ কর্মী বলে পরিচিতি না থাকলে পরীক্ষামূলক পদার্থবিদায়ে (experimental physics) কৃতিত্ব লাভ করা খুবই কঠিন)।

১) তাহলে এগুলি মানুষের সেখে দুশমান আলোকরূপে ধরা গড়ে।

২। বোসন নামটি হয়েছে আচার্য সভোক্রনাথ বসুর নাম থেকে-অনুবাদক

⁽১) প্রলেট : এক ধরনের জুয়া খেলা। একটা টেবিলের হাওখানে একটা চক্র থাকে সেটা খোরানো যায়। তার উপরে একটা বল চাপিরে দেওয়া হয়। বলটা লেছ পর্যন্ত টেবিলের একটা খালে গিয়ে পড়ে। খাপগুলিতে একটা করে সংখ্যা লেখা থাকে। —জনুবাধক

শক্তিশালী কেন্দ্রকীয় বলকে (strong nuclear force) বলা হয় ভূতী শ্রেলীর বলী এই বল প্রোটন এবং নিউট্রনের কার্কগুলিকে একত্রে ধরে রাখে। তাছাড়া একত্রে ধরে রাখে পরমাণুর কৈন্দ্রকের প্রোটন এবং নিউট্রনগুলিকে। বিশ্বাস করা হয় প্রয়ন (gloon) নামক

Fog - 0.2

উচ্চশক্তিৰ একটি খ্ৰেটন এবং একটি বিশ্বীত গ্ৰেটনেৰ সংঘৰ্ষ, ফলে আয় স্বাধীন একজ্যোতা কাৰ্কেন উৎপত্তি।

এক চক্রণ বিশিষ্ট আর একটি কণিকা এই বল বহন কবে। এই কণিকার পারশপরিক প্রতিক্রিয়া হয় শুধুযাত্র নিজের সঙ্গে এবং কার্কেব সঙ্গে। শভিশালী নিউক্লীয় বলের (strong nuclear force) একটি অস্তুত ধর্ম আছে, ভাব নাম অবরোধ (confinement)। এ বল সবসময়ই কণিকাগুলিকে বন্ধন কবে এমনভাবে সংযুক্ত করে যার কোনো বঙ্গ নেই। স্থনির্ভর একক কোনো কার্ক পাওয়া সন্তব নয়, কারণ তাহলেই এর কোনো না কোনো বঙ্গ থাকরে (লাল, সবুজ কিয়া নীল)। তার বদলে একটা লাল কার্ককে একটি প্রয়ন (gluon) "মালিকার (string)" সাহায়ে একটি সবুজ এবং একটি নীল কার্কের সঙ্গে সংযুক্ত হতে হবে (লাল + সবুজ + নীল = সাদা)। এইরক্স একটি ত্রয়ীর (triplet) ছারা একটি প্রোটন কিয়া নিউট্টন গঠিত হয়। আর একটি সন্তারমা কার্ক এবং বিশ্রীত কার্কের (anti quark) লোড (লাল + লাল বিপরীত (anti red) কিয়া সবুজ + সবুজ বিশ্রীত কিয়া নীল + নীল বিব্রোধী = সাদা)।

প্রী বিশ্ব সমন্তরে মেসন (meson) নামক কণিকা গঠিত হয়। এই কণিকাগুলি অস্থিত। কারণ কার্ক এবং বিপরীত কার্ক পরস্পারকে বিনাশ করে এবং উৎপন্ন করে ইলেষ্ট্রন এবং জনাানা কণিকা। এইরকম কারণে অবরোধের (confinement) ফলে স্বকীয়ভাবে একক একটি প্র্য়ন (gluon) পেতে বাধা সৃষ্টি হয়। কারণ, প্র্য়নেরও নিজস্ব রঙ আছে। তার বদলে একাধিক প্র্য়নের সমষ্টি পেতে হবে। সেগুলির রঙের যোগফল হবে সাদা। প্র্য়নের এ রক্ষ সংগ্রহে একটা অস্থির কণিকা গঠিত হয়, তার নাম প্রবল (glueball)।

অবরেষী ধর্ম প্লুয়ন কিন্তা কার্ক পর্যবেক্ষণের প্রতিবন্ধক। এই তথ্যের ফলে কার্ক এবং প্লুয়নকে কণিকারূপে বিচার সম্পর্কিত সমগ্র ধারণাকেই অধিবিদ্যাশ্রয়ী (metaphysical) মনে হতে পারে। শক্তিশালী নিউক্লীয় বলের (strong nuclear force) কিন্তু অনন্তস্পর্শী স্বাধীনতা (asymptotic freedom) নামক আর একটি ধর্ম আছে। এই ধর্মের অন্তিত্বের ফলে কার্ক এবং প্লুয়ন সম্পর্কিত ধারণা আরও সুসংজ্ঞিত হয়েছে। স্বাভাবিক শক্তিশুরে (at normal energies) শক্তিশালী নিউক্লীয় বল সত্যই শক্তিশালী। এই বল কার্কগুলিকে দৃঢ়ভাবে বন্ধন করে রাখে। কিন্তু বৃহৎ কণিকাত্তরণ যন্ত্রের (large particle accelerator) সাহায়ের পরীক্ষার ফল থেকে নির্দেশ পাওয়া যায়: উচ্চশক্তির স্তরে শক্তিশালী বল খুবই কম শক্তিশালী হয়ে পড়ে এবং কার্ক ও গ্লুয়নের আচরণ হয় প্রায় স্বাধীন কণিকার মতো। (চিত্র ৫.২) তে একটি উচ্চশক্তি সম্পন্ন প্রোটন এবং আ্যান্টপ্রোটনের সংঘর্ষের আলোকচিত্র দেখা যাছে। কয়েকটি প্রায় স্বাধীন কার্ক সৃষ্টি হয়েছিল এবং চিত্রদৃষ্ট একাধিক উৎসরণ পথ (jets of track) দেখা গিয়েছিল।

বিদ্যুৎ-চুম্বকীয় বল এবং দুর্বল নিউক্লীয় বলের ঐক্য সাধনের সাফল্যের ফলে এ দৃটি বলের সঙ্গে শত্তিশালী নিউক্লীয় বলের সমধ্য করে একটি মহান ঐকাবদ্ধ তত্ত্ব গঠন করার একাধিক প্রচেষ্টা হয়েছে (GUT - Grand Unified Theory) । এই নামকরণ কিম্ব একটি অতিশয়োজি। এই সমন্ত প্রচেষ্টার ফলে যে তত্ত্বগুলি সৃষ্টি হয়েছে, সেগুলি এমন কিছু মহান নয়। এখন কি তারা সম্পূর্ণ ঐকাবদ্ধও নয়, কারণ, মহাকর্ম এ উত্তের অন্তর্ভুক্ত হয়নি। সেগুলি সম্পূর্ণ তত্ত্বও নয়। কারণ, সেগুলিতে এমন কতগুলি স্থিতিমাপ (parameter) রয়েছে, তত্ত্ব থেকে থার মূল্য (value) সম্পর্কে ভবিষ্যদ্বাণী করা যায় না— বৈজ্ঞানিক পরীক্ষার সঙ্গে মানিয়ে নেওয়ার মতো করে মূলাগুলি (value) বেছে নিতে হয়। তবুও এগুলিকে সম্পূর্ণ ঐক্যবদ্ধ তত্ত্ব সৃষ্টির পথে একটি পদক্ষেপ বলা যেতে পাবে। GUT (মহান ঐক্যবদ্ধ তত্ত্ব)-এর মূলগত ধারণা : আগে উল্লেখ করা হয়েছিল শত্তিশালী নিউক্লীয় বল উচ্চশক্তির ক্ষেত্রে কম শক্তিশালী হয়ে পড়ে। অন্যদিকৈ আবার যে সমস্ত বিদাৎ-চুম্বকীয় বল এবং দুর্বল বলের অনস্তস্পলী (asymptotically) স্বাধীনতা নেই, সেগুলি উচ্চ শক্তিতে আরও শক্তিশালী হয়ে ওঠে। কোনো কোনো অতি উচ্চশক্তির নাম দেওয়া হয়েছে ঐকা সৃষ্টিকারী মহান শক্তি (grand unification energy) । এই শক্তিতে ৩টি বলের একই রকম শক্তি থাকে। সে অবস্থায় এগুলি একই শক্তির বিভিন্ন দিক হতে পারে (different aspect)। GUT-এর আর একটি ভবিষাদ্বাণী: এই শক্তিতে কার্ক এবং ইলেকট্রনের মতো বিভিন্ন অর্ধচক্রণ বিশিষ্ট (spin 1/2 matter particle) পদার্থকণাগুলি মূলত একই হবে। এইভাবে তারা আর এক ধরনের ঐক্য লাভ করেছে।

মহান ঐক্য সৃষ্টিকারী শক্তির (grand unification enregy) পরিমণ্ট্রিত মূল্য সম্পর্কে খুব হবলী জানা যায় না। তবে যতদূর সম্ভব এর পরিমাণগত দৃল্য অন্ততপক্ষে ইতে হবে এক হাজার মিলিয়ান মিলিয়ান GeV। আধুনিক কণিকাত্তরণ যস্ত্রগুলি (particle accelerators) প্রায় একশা GeV শক্তি সম্পন্ন কণিকগুলির ভিতরে সংঘর্ষ ঘটাতে পারে। কয়েক হাজার GeV শক্তি সম্পন্ন কণিকার সংঘর্ষ ঘটাতে পারে এ রকম যন্ত্রের পরিকল্পনা করা হচ্ছে। মহান ঐকাসৃষ্টিকারী শক্তিতে কণিকাগুলির ত্বণ ঘটানোর মতো শক্তিশালী যন্ত্রের আয়তন হবে সৌরজগতের (solar system) মতো বিরাট। আধুনিক অর্থনৈতিক অবস্থায় এই পরিমাণ অর্থ পাওয়ার সম্ভাবনাও কম। সূতরাং মহান ঐক্যবদ্ধ তত্ত্ব গবেষণাগারে প্রত্যক্ষতাবে পরীক্ষা করা অসম্ভব। কিন্তু বিদাৎ-চুম্বকীয় এবং দুর্বল ঐকাবদ্ধ তত্ত্বের ক্ষেত্রের মতো এই তত্ত্বের স্বরশক্তি ফলশ্রুতিও রয়েছে। সেগুলি পরীক্ষা করা সম্ভব।

এগুলির ভিতরে সব চাইতে আকর্ষণীয় হল প্রোটন সম্পর্কে ভবিষাদ্বাণী। সাধারণ পদার্থের ভরের অনেকটাই প্রোটন দিয়ে তৈরী। এ ভবিধাদ্বাণী অনুসারে প্রোটনগুলি স্বতঃশ্বুর্তভাবে অবক্ষয় হয়ে এয়াণ্টিইলেকট্রনের মতো অপেক্ষাকৃত হান্ধ্য কণিকায় পরিণত হতে পারে। এ রকম ব্যাপার সম্ভব হওয়ার কারণ মহান ঐকাসৃষ্টিকারী শক্তিতে কার্ক এবং এ্যাণ্টিইলেকট্রনে কোনো মূলগত পার্থকা নেই। সাধারণত একটি প্রোটনের ভিতরে যে তিনটি কার্ক থাকে তাদের এ্যান্টিইলেকট্রনে পরিণত হওয়ার মতো শক্তি থাকে না। কিন্তু কখনো কখনো তারা হয়তো পরিবর্তিত হওয়ার মতো প্রয়োজনীয় শক্তি সংগ্রহ করতে পারে। এর যুক্তি: অনিশ্চয়তাবাদ অনুসারে প্রোটনের ভিতরকার কার্কের শক্তি নির্ভুলভাবে নির্ণয় করা যায় না। এ রকম শক্তি সংগ্রহ করলে প্রোটনের অবক্ষয় হতে পারে। কার্কের এ রকম যথেষ্ট পরিমাণ শক্তি সংগ্রহ করার সম্ভাব্যতা এমন যে এ পরিবর্তন দেখতে হলে আপনাকে অপেক্ষা করতে হতে পারে অস্ততপক্ষে এক মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান (অর্থাৎ একের পিঠে ত্রিশটি শুনা) বৎসর। এই সময়ের পরিমাণ বৃহৎ বিস্ফোরণের সময় থেকে আধুনিক কাল পর্যন্ত সময়ের পরিমাণের চাইতে অনেক বেশী। সে সময়ের পরিমাণ মাত্র দশ হাজার মিলিয়ান বছর কিম্বা তার কাছাকাছি (একের পিঠে দশটি শুনা)। সূতরাং অনেকে ভাবতে পারেন প্রোটনের স্বতঃস্ফূর্ত অবক্ষয় পরীক্ষামূলকভাবে পর্যবেক্ষণ করা সম্ভব নয়। কিন্তু অতি বৃহৎ সংখ্যায় প্রোটন আছে এই রকম বিরাট পরিমাণ পদার্থ পর্যক্ষেণ করলে এই অবক্ষয় দেখার সম্ভাবনা থাকতে পারে (উদাহরণ: ুকেউ যদি একের পিঠে একত্রিশটি শুনা পরিয়াণ সংখ্যায় প্রোটনকে একবছরব্যাপী পর্যবেক্ষণ করে তা হলে সরলতম GUT অনুসারে তার একাধিক প্রোটনের অবক্ষয় দেখার সম্ভাবনা থাকতে পারে)।

এরকম কয়েকটি পরীক্ষা করা হয়েছে। কিন্তু কোনো পরীক্ষাতেই প্রোটন কিন্তা নিউট্রনের **অবক্ষয় সম্পর্কে নিশ্চিত সাক্ষা পাওয়া যায়** নি। একটি পরীক্ষা করা হয়েছিল ওহিওর ঘটন লবণ খনিতে (Morton Salt Mine) [কারণ ছিল, মহাজাগতিক (cosmic) রশিরে ক্রিয়ার **ফলে যে সমস্ত ঘটনা ঘটার সম্ভাবনা সেগুলি এড়িয়ে যাওয়া। কারণ, এই ক্রিয়া এবং প্রোটনের** স্বতঃস্ফুর্ত অবক্ষয় নিয়ে একটা বিদ্রান্তি হতে পারে }। এই পরীক্ষাতে ৮০০০ টন জল ব্যবহার করা হয়েছিল। এই পরীক্ষার সময় প্রোটনের কোনো স্বতঃশ্চর্ত অবক্ষয় দেখা যায় নি। সে জনা হিসাব করে বলা যেতে পারে প্রোটনের জীবনকাল দশ মিলিয়ান মিলিয়ান মিলিয়ান মিলিয়ান (একের পিঠে একত্রিশটা শুন্য) বৎসরেরও বেশী। সরলতম মহান ঐক্যবদ্ধ তত্ত্বের ভবিষ্যত্ত্বাণী অনুসারে প্রোটনের জীবনকালের চাইতে এই সময়কাল বেশী। কিন্তু আরো বিস্তৃত অনেক তত্ত্ব আছে। সে তত্ত্বগুলি অনুসারে ভবিষ্যদ্বাণী করা জীবনকাল আরো অনেক বেশী। এ তত্ত্বগুলি পরীক্ষা করতে গেলে আরো অনেক বেশী পরিমাণ পদার্থ নিয়ে সৃক্ষতর বৈজ্ঞানিক পরীক্ষা প্রয়োজন হবে।

শ্বতঃশ্বর্ত প্রোটন অবক্ষয় পর্যবেক্ষণ করা খুব শক্ত ৷ কিছু আমাদের অস্তিত্বটাই হয়তো এর বিপরীত পদ্ধতির ফলশ্রুতি। অর্থাৎ প্রোটন উৎপাদনের ফলশ্রুতি। কিম্বা আরো সরলভাবে বলা যায়, যে প্রাথমিক অবস্থায় বিশরীত কার্কের চাইতে কার্ক বেশী ছিল না সেই অবস্থায় উৎপাদনের ফলপ্রুতি। মহাবিশ্বের শুরু সম্পর্কে এটাই সব চাইতে স্বাভাবিক কল্পন। পৃথিবীর পদার্থের বেশীর ভাগই তৈরী প্রোটন এবং নিউট্রন দিয়ে। সেগুলি আবার তৈরী কার্ক দিয়ে। বৃহৎ কণিকা ত্বরণযম্ভে পদার্থবিদ্দের সৃষ্টি করা সামানা কয়েকটি ছাড়া বিপরীত কার্ক (anti-quark) দিয়ে তৈরী বিপরীত প্রোটন (anti-proton) এবং বিপরীত নিউট্রনের (anti--neutron) কোনো অস্তিত্ব নেই। মহাজাগতিক রশ্মিগুলির সাক্ষ্য অনুসারে আয়াদের নীহারিকার সমস্ত পদার্থ সাপেক্ষ এ তথ্য সত্য : উচ্চশক্তিতে সংঘটিত সংঘর্ষের ফলে যে সামান্য সংখ্যক কণিকা (particle) বিশরীত কণিকা জ্বোড় (anti-particle pairs) সৃষ্টি হয় সেগুলি বাদ দিলে কোনো বিপরীত প্রোটন কিয়া বিপরীত-নিউট্রনের অস্তিত্ব নেই। আমাদের নীহারিকাতে যদি বিপরীত পদার্থ দিয়ে গঠিত বৃহৎ অঞ্চল থাকত তা হলে পদার্থ এবং বিপরীত পদার্থ অঞ্চলের সীমান্ত থেকে বৃহৎ পরিমাণ বিকিরণ পর্যকেকণ করার আশা আমরা করতে শারতাম। সেখানে বহু কণিকার সঞ্চে বিপরীত কণিকার সংঘর্ষ হোত ফলে তারা পরস্পরকে বিনাশ করত এবং উচ্চশক্তি সম্পন্ন বিকিরণ নির্গ**ত হোত।**

অন্যান্য নীহারিকাডে পদার্থ প্রোটন এবং নিউট্রন অথবা বিশরীত প্রোটন এবং বিপরীত-নিউট্রন দ্বারা গঠিত কি না: এ সম্পর্কে আমাদের কোনো প্রতাক্ষ সাক্ষা নেই। তবে হয় এ রকম না হয় ও রকম হওয়া আবশ্যিক: একই নীহারিকাতে দুইয়ের মিশ্রল থাকতে পারে না। কারণ, সেরকম হলে আমরা বিনাশের ফলে উদ্ভুত প্রচুর বিকিরণ দেখতে শৈতাম। সেজন্য আমরা বিশ্বাস করি সমস্ত নীহারিকাই কার্ক দিয়ে গঠিত, বিশরীত-কার্ক দিয়ে নয়। মনে হয় কভগুলি নীহারিকা পদার্থ দিয়ে গঠিত এবং কতগুলি নীহারিকা বিপরীত পদার্থ দিয়ে গঠিত-এ রকম সম্ভাবনা নেই।

বিপরীত কার্কের তুলনায় কার্কের সংখ্যা অত বেশী কেন? দুইয়েরই সংখ্যায় এক না হওয়ার কারণ কি ? গৃইয়ের সংখ্যা সমান না হওয়া আমাদের সৈভিগ্য। তার কারণ, সে রকম হলে সমস্ত কার্ক এবং বিশরীত-কার্ক মহাবিশ্বের আদিমকালে পরস্পরকে ধ্বংস করে ফেলত। মহাবিশ্ব বিকিরণে ভর্তি থাকত, কিন্ধ বিশেষ কোনো পদার্থ থাকত না। মনুষ্যজীবন বিকাশ লাভ করার মডো কোনো নীহারিকা, কোনো তারকা, কোনো গ্রহ থাকত না। শুক্তে যদি দুইয়ের সংখ্যা সমান থেকেও থাকে, তা হলেও এখন কার্কের সংখ্যা এত বেশী কেন সৌভাগ্যক্রয়ে সে সম্পর্কে ঐক্যবদ্ধ তত্তগুলী একটি ব্যাখ্যা দিতে পারে। আমরা দেখেছি

উচ্চশক্তিতে কার্কের বিপরীত ইলেকট্রনে রূপান্তরিত হওয়ার অনুমোনন বিটা বির পাছে। এর বিশরীত পদ্ধতি অর্থাৎ বিশরীত কার্কের ইলেকট্রনে রূপান্তর এবং ইলেকট্রন আর বিশরীত ইলেকট্রনের বিপরীত-কার্ক এবং কার্কে ক্লপান্তর তারা অনুমোদন করে। মহাবিধের অতি আদিম যুগে একটা সময় ছিল যখন মহাবিশ্ব এত উত্তপ্ত হওয়ার ফলে কণিকা শক্তি এত উচ্চমানের হোত যে এই সমস্ত রুপান্তর সম্ভবপর হিল কিছ তার ফলে কার্কের সংখ্যা বিপরীত-কার্কের চাইতে বেশী হবে কেন ? তার কারণ পদার্ঘবিদ্যার বিধিগুলি কণিকা এবং **বিপরীত কণিকার ক্ষেত্রে** অভিন্ন নয়।

20

১৯৫৬ সাল অবধি বিশ্বাস ছিল পদার্থবিদ্যার বিধিত্তলি তিনটি পৃথক প্রতিসাম্যের (symmetry) প্রত্যেকটিকে মেনে চলে। এদের নাম C, P এবং T । C প্রতিসামোর অর্থ : বিষিগুলি কণিকা এবং বিপরীত কণিকার ক্ষেত্রে অভিন্ন। প্রতিসাম্য P-এর অর্থ: বিধিগুলি থে কোনো পরিস্থিতি এবং তার দর্পণ প্রতিবিম্বের (mirror image) ক্ষেত্রে অভিন্ন হবে (দক্ষিণ দিকে ঘূর্ণায়মান একটি কণিকার দর্শণ প্রতিবিশ্ব হবে বাম দিকে ঘূর্ণায়মান প্রতিবিশ্ব)। প্রতিসাম্য T-এর অর্থ: আপনি যদি সমস্ত কণিকা এবং প্রতিকণিকার গতি বিপরীতমুখী করে দেন, তা হলে তন্ত্রটি (system) অতীত কালে যা ছিল সে অবস্থায় ফিরে যাবে। অর্থাৎ বিধিগুলি কালের সম্মুখ অভিমুখে এবং পশ্চাৎ অভিমুখে একই হবে।

১৯৫৬ সালে সুং-দাও লী (Tsung-Dao Lee) এবং চেন নিং ইয়াং (Chen Ning Yang) নামে দুজন আমেরিকান পদার্থবিদ প্রস্তাবনা করেন যে, আসলে দুর্বল বল (weak force) প্রতিসাম্য P মানে না। অর্থাৎ দুর্বল বল (weak force) তার দর্পণ প্রতিবিদ্ধের যেভাবে বিকশিত হওয়ার সপ্তাবনা ছিল মহাবিশ্বকৈ তার তুলনায় অন্যভাবে বিকশিত করাবে। সে বছরই চেন্-শিউং উ (Chien-Shiung Wu) নাম্মী আর একজন সহকমী তাঁদের ভবিষাঘাণীর সত্যতা প্রমাণ করেন। সেই মহিলার পদ্ধতি ছিল: একটি টোম্বক ক্ষেত্রে তেজদ্বিয় পরমাণুর কেন্দ্রকণ্ডলিকে এক সাবে (lining up) সাজিয়ে দেওয়া যার ফলে তারা সবগুলি একই অভিমূবে ঘূর্ণায়মান থাকে। তিনি দেখিয়েছিলেন এক অভিমূখের তুলনায় অন্য অভিমূখে ফেশী সংখ্যক ইলেকট্রন নির্গত হয়। পরের বছর লী (Lee) এবং ইয়াং তাঁদের চিন্তাধারার জনা নোবেল পুরস্কার পান। এও দেখা গিয়েছিল যে দুর্বল বল (weak force) প্রতিসাম্য-C মেনে চলে না। অর্থাৎ এর ফলে বিপরীত কণিকা দিয়ে গঠিত মহাবিশ্বের আচরণ আমাদের মহাবিশ্বের চাইতে পৃথক হবে। তবুও যনে হয়েছিল দুর্বল বল CP-এর যুক্ত প্রতিসাম্য মেনে চলে। অর্থাৎ এর উপরে যদি প্রতিটি কণিকাকে ভার বিপরীত কণিকার সঙ্গে বদলে নেওয়া যায়, তা হলে মহাবিশ্ব তার দর্পণ প্রতিবিদ্ধের মতো একইভাবে বিকাশ লাভ করবে। কিন্তু ১৯৬৪ সালে জে. ডব্লিউ. ফ্লোনিন (J. W. Cronin) এবং ভালে ফিচ্ (Val Fitch) নামক আরো পূজন আমেরিকান আবিষ্ঠার করেন কয়েকটি কণিকা তাদের অবক্ষয়ের সময় CP প্রতিসাম্য মেনে চলে না। এগুলির নাম কে-মেসন্ (K-Meson)। পরিণামে ১৯৮০ সালে ক্রোনিন এবং ফিছ্ তাঁদের সবেষণার জন্য নোবেল পুরস্কার লাভ করেন (আমরা হয়তো যা ভেবেছি,

মহাবিশ্বের গঠন যে অতটা সরল নয় সেটা প্রমাণ করার জনা অনেক পুরস্কার দেওয়া হয়েছে।) একটা গাণিতিক উপপাদা অনুসারে যে তত্ত্ব কোয়ান্টাম বলবিদ্যা এবং অপেক্ষবাদ মেনে চলে, সে তত্ত্বকে শব সময়ই CPT-এব সংযুক্ত প্রতিসাম্য মেনে চলতে হবে। অর্থাৎ কণিকাগুলির স্থলে যদি বিশরীত কণিকা (anti-particle) প্রতিস্থাপন করা যায় এবং তার দর্পণ প্রতিবিদ্ব নেওয়া হয় আর কালের অভিমুখ বিপরীতগামী করা হয়, তা হলেও মহাবিশ্বের আচরণ একই রকম থাকবে। কিন্তু জোনিন এবং খিচ দেখালেন: যদি কণিকার স্থানে বিপরীত কণিকা (anti-particle) স্থাপন করা যায় এবং সেটা যদি দর্পণ প্রতিবিম্মের রূপ গ্রহণ করে কিন্তু সময়ের অভিমুখ যদি বিপরীত না হয় তা হলে মহাবিশ্বের আচরণ অভিন্ন হবে মা। সূতরাং সময়ের অভিমুখ বিপরীত হলে পদার্থবিদারে বিধির (law) পরিবর্তম অবশাস্তাবী। তারা প্রতিসামা-T মেনে চলে না ৷

আদিম মহাবিশ্ব অবশাই প্রতিসামা-🎖 মানে না: সময় এগিয়ে ঘাওয়ার সঙ্গে সঙ্গে মহাবিশ্ব সম্প্রসারিত হয়। সময়ের অভিমুর্খ পশ্চাদ্বতী হলে মহাবিশ্ব সন্ধৃচিত হরে। এবং যেহেতু প্রতিসামা-T মেনে চলে না এ রকম একাধিক বল রয়েছে, সেজনা মহাবিশ্ব সম্প্রসারণের সঙ্গে সঙ্গেই এই বলগুলি (force) যে সংখ্যায় ইলেকট্রনগুলি বিপরীত কার্কে রূপান্তরিত হয় তার তুলনায় অনেক বেশী বিপরীত ইলেকট্রনকে কার্কে রূপান্তরিত করবে। তারপর মহাবিশ্ব যখন সম্প্রসারিত হয়ে শীতল হবে তখন বিশরীত কার্কগুলি কার্কের সঙ্গে বিনষ্ট হবে কিন্ত যেহেতু বিপরীত কার্কগুলির তুলনায় কার্কের সংখ্যা সামান্য বেশী, সে জন্য সামান্য কেশী পরিমাণ কার্ক অবশিষ্ট থাকবে। আজকের দিনে যে পদার্থ আমরা দেখতে পাই এবং যা দিয়ে আমরা নিজেরাও তৈরী হয়েছি সে পদার্থ এই কার্ক দিয়েই তৈরী। সূতরাং আমাদের অক্তিত্বটাকেই মহান ঐকাবদ্ধ তত্ত্বজ্ঞালির (grand unified theory) সপক্ষে প্রমাণক্রপে গ্রহণ করা যেতে পারে। কিম্ব এ প্রমাণ গুণগত (qualitive) মাত্র। অনিশ্চিতিগুলি এমনই যে বিনাশের পর অবশিষ্ট কার্কের সংখ্যা সম্পর্কে ভবিষাদ্বাণী করা সাধ্রব নয়, এমন কি কার্ক অবশিষ্ট থাকবে না বিপরীত কার্ক অবশিষ্ট থাকবে সেটা বলা সম্ভব নয় (যদি বিপরীত কার্ক বেশী থাকত, তাহলে কিন্তু আমরা সোজাসুজি বিপরীত কার্কের নাম দিতাম কার্ক এবং কার্কের নাম দিতাম বিপরীত কার্ক)।

মহাকধীয় বস মহান ঐকাবদ্ধ তত্ত্বের অন্তর্ভুক্ত নয়। এতে খ্ব বেশী কিছু এসে যায় না। কারণ, মহাক্ষীয় বল এত দুর্বল যে মৌলিক কণিকাগুলি কিয়া প্রমাণু নিয়ে বিচার করার সময় আমরা সাধারণভাবে মহাকর্ষীয় বলকে অগ্রাহ্য করতে পারি। কিন্তু যেহেত এই বলের পাল্লা (range) দীর্ঘ এবং সবসময়ই আকর্ষণী, সে জন্য এই বলের ক্রিয়াগুলি পরস্পরের সঙ্গে যোগযুক্ত হয় (add-up) । ফলে পদার্থ কলিকাগুলির সংখ্যা যথেষ্ট বৃহৎ ছলে মহাকষীয় বলগুলি অন্যান্য সমস্ত বলের উপরে প্রাধান্য লাভ করতে পারে। সেই জন্য মহাকর্ষ বিশ্বের বিবর্তন নিয়ন্ত্রণ করে। এমন কি যে সমস্ত বস্তুপিত্তের আকার তারকার মতো সেগুলির ক্ষেত্রেও মহাক্ষীয় ক: অন্যান্য সমস্ত বলের উপরে প্রাধান্য লাভ করতে পারে। ফলে তারকাটি চুপ্সে যেতে পারে (collapse)। ১৯৭০-এর দশকৈ আমার গবেষণার বিষয় ছিল তারকা চুপুসে যাওয়ার ফলে সৃষ্ট ঐ ধরনের কৃষ্ণগহুর এবং সেগুলির সর্ব পার্দ্ধের ভীব্র মহাকর্ষীয় ক্ষেত্র

১: সঠিক চীনা উচ্চারণ অনুবাদকের জানা নেই— অনুবাদক:

সমূহ। এই গবেষণা কোয়ান্টাম বলবিদার তত্ত্ব এবং ব্যাপক অপেক্ষবাদ কিভাবে পরপ্রকে । ি। । । । । । । । । । । । । । । এ । প্রভাবিত করতে পারে সে বিষয়ে প্রথম ইঙ্গিতের পথিকৃৎ। এটা ছিল আগমী দিনের কোয়ান্টাম । তথ্বীয় মহাকর্ষের রূপের একটি ছায়া (glimpse)।

কৃষ্ণগহুর

(Black Holes)

কৃষ্ণগত্তর (Black Holes) শব্দটার উৎপত্তি হয়েছে খুবই সম্প্রতি। ১৯৬৯ প্রীষ্টাব্দে জন হইলার (John Wheeler) নামে একজন আমেরিকান বৈজ্ঞানিক এই শব্দটি সৃষ্টি করেছিলেন। এটা আসলে একটি ধারণার বিবরণের নক্ষা (graphic description)। এ চিন্তাধারার বয়স অন্তত দুশ' বছর। সে সময় আলোক সম্পর্কে দুটি তত্ত্ব প্রচলিত ছিল। তার ভিতরে একটি তত্ত্ব নিউটন সমর্থন করতেন। সে তত্ত্ব অনুসারে আলোক কণিকা দিয়ে গঠিত। এখন আমরা জানি আসলে দুটি তত্ত্বই নির্ভুল। কোয়াটাম বলবিদারে তরঙ্গ /কিনিকার ছৈততার ভিত্তিতে আলোককে তরঙ্গ এবং কণিকা দুভাবেই বিচার করা যায়। আলোক তরঙ্গ দিয়ে গঠিত এই তত্ত্বের ভিত্তিতে মহাকর্ম সাপেক্ষ আলোকের কি প্রতিক্রিয়া হবে সেটা স্পষ্ট ছিল না। কিছু আলোক যদি কণিকা দিয়ে গঠিত হয়, তা হলে আশা করা যেতে পারে কামানের গোলা, রকেট এবং গ্রহশুলির মতো আলোকও মহাকর্ম দিয়ে প্রভাবিত হবে। প্রথমে ধারণা ছিল আলোক কণিকাগুলির ক্রতি অসীম। সূত্রাং, মহাকর্ম তার গতি মহুর করতে পারবে না। কিছু রোমার (Roemer) আবিষ্কার করলেন আলোকের ক্রতির সীমা আছে। এর অর্থ আলোকের উপর মহাকর্বের গুরুত্বপূর্ণ ক্রিয়া থাকতে পারে।

এই তথ্যের উপর ভিত্তি করে জন মিচেল (John Michell) নামে কেখ্রিজ বিশ্ববিদ্যালয়ের একজন ভন (Don—অধ্যাপক) ১৮৮৩ সালে ফিলোজফিক্যাল ট্রানজ্যাকশন্স্ আব্ দি রয়াল সোসাইটি, লগুন (Philosophical Transactions of the Royal Society of London) পত্রিকায় একটি গবেষণাপত্র প্রকাশ করেন। এই প্রবন্ধে তিনি বলেন একটি তারকার যদি যথেষ্ঠ তর এবং বনত্ব থাকে তাহলে তার মহাক্ষীয় ক্ষেত্র এত শক্তিশালী হবৈ যে । তি । তালোক সেখান থেকে নির্গত হতে শারবে না। সেই তারকার পৃষ্ঠ থেকে নির্গত আলোক বেলী দূর যাওয়ার আগেই তারকাটির মহাক্ষীয় আকর্ষণ তাকে পিছনে টেনে নিয়ে আসবে। এরকম বহুসংখ্যক তারকা থাকতে শারে এই ধরনের ইন্সিত মিচেল দিয়েছিলেন। যদিও সেগুলির আলোক আমাদের কাছে শৌছাতে শারবে না বলে আমরা সেগুলিকে দেখতে শাব না তবুও সেগুলির মহাক্ষীয় আকর্ষণ আমাদের বোধগমা হবে। এই সমস্ত বন্ধপিওকেই আমরা এখন কৃষ্ণগহর বলি। তার কারণ, সত্যিই সেগুলি কৃষ্ণগহর অর্থাৎ স্থানে (space) কৃষ্ণ শূনাতা। কথ্যক বছব পর ফরাসী কৈন্ধানিক মার্কুইস্ দা লাপ্লাস (Marquis de Laplace) এই রকম ইন্সিত করেছিলেন। মনে হয় তার এই ইন্সিত হিল আপাতদৃষ্টিতে মিলেরে ইন্সিতের সঙ্গে সম্পোক্তিন। তার বই সিস্টেম অব্ দি ওয়ার্ল্ড (System of the World) এর প্রথম এবং ছিত্তীয় সংস্করণে এই ইন্সিত হিল কিন্তু আকর্ষণীয় ব্যাপার হল: পরবর্তী সংস্করণগুলি থেকে এ ইন্সিত তিনি বাদ দিয়েছিলেন। হয়তো ভেবেছিলেন এরকম চিন্তাধারা একটা পাগলামি। (তাছায়ে, উনবিংশ শতাব্দীতে আলোকের কণিকাতত্ত্বর জনপ্রিয়তা চলে যায়, তখন মনে হয়েছিল তর্ম্বতত্ত্ব দিয়ে সব কিছুই ব্যাখ্যা করা সপ্তব। তাছায়ে, তর্ম্বতত্ত্ব মেনে নিলে মহাকর্ষ কি করে আলোককে প্রভাবিত করবে সেটা কোনোক্রমেই ব্যাঝা যায় নি)।

আসলে নিউটনের মহাকর্ষীয় তত্ত্বে আলোককে যে কামানের গোলার মতো মনে করা হয়েছে সেটা সতিইে সঙ্গতিপূর্ণ নয়। তার কারণ আলোক হির দ্রুতি সম্পন্ন। (পৃথিবী থেকে উদ্ধাদিকে একটি কামানের গোলা ছুঁড়লে মহাকর্ষের প্রভাবে তার গতি মহুরতর হবে এক একসময় সেটা থেমে যাবে আর নিচের দিকে পড়তে খাকবে। ফোটন কিন্তু হির দ্রুতিতে জৈনর দিকে যেতেই থাকবে। তাহলে নিউটনীয় মহাকর্ষ কি করে আলোককে প্রভাবিত করবে?) ১৯১৫ সালে আইনস্টাইনের ব্যাপক অপেক্ষরাদ উপস্থাপনের আগে মহাকর্ষ কি করে আলোককে প্রভাবিত করে আলোককে প্রভাবিত করে সম্পর্কে কোনো সঙ্গতিপূর্ণ তত্ত্ব উপস্থাপিত হয় নি এবং তারও অনেক পরে অভিবৃত্তং ভরসম্পন্ন তারকাগুলি সাপেক্ষ এই তত্ত্বের ফলশ্রুতি বোধগমা হয়েছে।

কৃষ্ণাহর কি করে তৈরী হয় সেটা বৃথতে হলে প্রথম বোঝা দরকার একটি তারকার জীবনচক্র (life cycle)। যাগন বৃহৎ পরিমাণ বায় (প্রধানত হাইড্রোজেন) নিজস্ব মহাক্ষীয় আকর্ষণের চাপে নিজের উপরেই চুপ্সে যেতে থাকে তথন একটি তারকা সৃষ্টি হয়। তারকাটি সঙ্চিত হ্বার সঙ্গে সঙ্গে বায়ুর পরমাগৃগুলির ক্রমণ বেশী ঘন ঘন এবং বর্ধমান দ্রুতিতে পারুপান্থিক সংঘর্য হতে থাকে, ফলে বায়ু উত্তপ্ত হয়। শেষ পর্যন্ত বায়ু এত উত্তপ্ত হয় যে, হাইড্রোজেন গরমাগৃগুলি সংঘর্যর পর পরস্পর থেকে দূরে হিটকে না গিয়ে সংযুক্ত হয়ে হিলিয়াছে (Helium) পরিণত হয়। এই প্রক্রিয়া একটি নিয়ন্ত্রিত হাইড্রোজেন বোমা বিশ্বোরণের মতো। এর ফলে যে তাপ নির্গত হয় তার জনাই তারকাটি আলোক বিকিরণ করে। এই বাড়তি উত্তাপ বায়ুর চাপও বাড়াতে থাকে। যখন বায়ুর চাপ এবং মহাক্ষীয় আকর্ষণ সমান হয় তথন বায়ুর সন্তোচন বন্ধ হয় । ব্যাপারটা প্রায় একটি বেলুনের মতো। বেলুনের ভিতরকার বায়ুর চাপ চেষ্টা করে সেটাকৈ ফোলাতে আর রবারের চাপ চেষ্টা করে বেলুনটাকে ক্ষুপ্তকর করতে। ফলে একটি ভারসায়া সৃষ্টি হয়। পারমাণবিক প্রক্রিয়া থেকে উত্ত্বত তাপ এবং মহাক্ষীয়

আকর্ষণে ভারসামোর ফলে তারকাগুলি বছকাল পর্যন্ত সুন্থিত (stable) থাকে। শেষ পর্যন্ত কিছ তারকাটির হাইড্রোজেন এবং অন্যান্য পারমাণবিক ছালানী ফুরিয়েও যাবে। একটি প্রবিরোধী ব্যাপার হল: শুরুতে তারকাটির ছালানী যত কেদী থাকে ছালানী ফুরিয়ে যায় তত তাড়াতাড়ি। এর কারণ, তারকাটির ভর যত বেশী হয় মহাকর্ষীয় আকর্ষণের সঙ্গে ভারসামা রক্ষার জন্য তাকে তত বেশী উত্তপ্ত হতে হয়। আর তারকাটি যত উত্তপ্ত হবে তার ছালানীও তত তাড়াতাড়ি ফুরিয়ে যাবে। আমানের সূর্যের বোধহয় আর পাঁচপো কোটি বছর কিয়া তার কাছাকাছি সময় পর্যন্ত চলবার মতো ছালানী আছে কিছু আরও ভরসম্পান তারকাগুলি দশ কোটি বছরের মতো অল্প সময়েই তানের ছালানী শেষ করে দিতে পাবে। এই কাল মহাবিশ্বের বয়সের চাইতে অনেক কম। একটি তারকার ছালানী শেষ হয়ে গোলে সেটা শীতল হতে থাকে আর সন্থানিত হতে থাকে। তখন সেটার কি হতে পারে সেটা বোঝা গিয়েছিল শুধুমাত্র উনিশশো কুড়ির দশকের শেষে।

১৯২৮ সালে সুরক্ষণায় চন্দ্রশেষর (Subrahmanyan Chandrashekhar) নামে একজন ভারতীয় গ্রাজুয়েট ছাত্র কেন্ত্রিজে সারে আর্থার এডিংটনের (Sir Arthur Eddington) কাছে পড়বার জনা ইংলতে রওনা হন। তিনি ছিলেন ব্যাপক সপেক্ষরাদ সম্পর্কে একজন বিশেষজা। (কোনো কোনো কাহিনী অনুসারে ১৯২০ সালের প্রথম দিকে একজন সাংবাহিক এডিংটনকে বলেছিলেন— পৃথিবীতে ব্যাপক সপেক্ষরাদ বোঝেন মাত্র ভিনজন। এডিংটন একটু রেখে উত্তর দিয়েছিলেন— "আমি ভাগতে চেষ্টা করছি তৃতীয় ব্যক্তিটি কে?")। জাহাজে আসবার সময় চন্দ্রশেষর অন্ধ কয়ে বাব করেছিলেন—ব্যবহারের ফলে সমস্ত জালানী ফুরিমে গোলে নিজের মহাকর্ষের বিজন্মে নিজেকে বহন করতে হলে একটি ভারকার ওর কত হতে হবে। ভারনাটি ছিল এইকজম: তারকাটি ক্ষুস্ত হয়ে গোলে পদার্থ কণিকাগুলি পুর ফালুকাছি এসে যায় সুতরাং পাউলির (Pauli) অম্পর্কনতন্ত্র (exclusion principle) অনুসারে ভালের আতান্ত বিভিন্ন গতিবেগ হওয়া আবশ্যিক। এইজন্য তারা পরম্পর ব্যাকে দূরে চালে যেতে থাকে, ফলে ভারকান্তির প্রসারণের চেন্টা দেখা দেখ (tend to make the star expand)। ঠিক যেনে ভারকান্তির জীবনের শুকতে মহাক্ষীয় তথ্বের সঙ্গে ভারসাম্য রক্ষা করেছিল উত্তাপ, তেমনি মহাক্ষীয় আকর্ষণ এবং অপ্রক্রনিতন্ত্রভিত্তির (exclusion principle) বিকর্ষণার ভারেনীয় আকর্ষণ এবং অপ্রক্রনিতন্ত্রভিত্তির (exclusion principle) বিকর্ষণার ভারসাম্য রক্ষিত হলেই ভারকাটি ভার নিজপ্র ন্যাসার্থ অপরিবর্তিত রাখতে পারে।

কিছ চন্দ্রশেষর বুঝতে গেরেছিলেন অপবর্জনভব্বতিত্তিক বিকর্ষণের একটি সীমা আছে। অপেক্ষবাদ ভারকাটির ভিতরভাব পদাধ কনিকান্তনির গতিবেগের পার্থকোর সর্বোচ্চ সীমা বেঁধে নিয়েছে। সে সীমা হল আলোভেব ক্রতি (speed of light)। এর অর্থ হল: ভারকাটি যথেষ্ট ঘন হলে অপবর্জনভত্বভিত্তিক বিকর্ষণ মহাক্রীয় আকর্ষণের চাইতে কম হবে। চন্দ্রশেষর ছিমাব করে নেখেছিলেন শীতল ভারকার ওব আমাদের সূর্যের ভরের সেড় গুণের চাইতে কেশী হলে সৈ নিজের মহাকর্ব থেকে আন্তরক্ষা করতে পারবে না (এই ভর এখন চন্দ্রশেধরের সীমা (Chandrashekhar limit) নামে খ্যাত)। ক্রণ বৈজ্ঞানিক লেভ ভেজিভোজিত লাজিব (Lev Devidovich Landau) প্রায় একই সময়ে একই ধরনের আবিক্যার করেছিলেন।

উদ্ধ ভরসম্পন্ন ভারকাগুলির অস্ট্রিম দশা (ultimate fate) সম্পর্কে এই তত্ত্বে ফলক্রনি

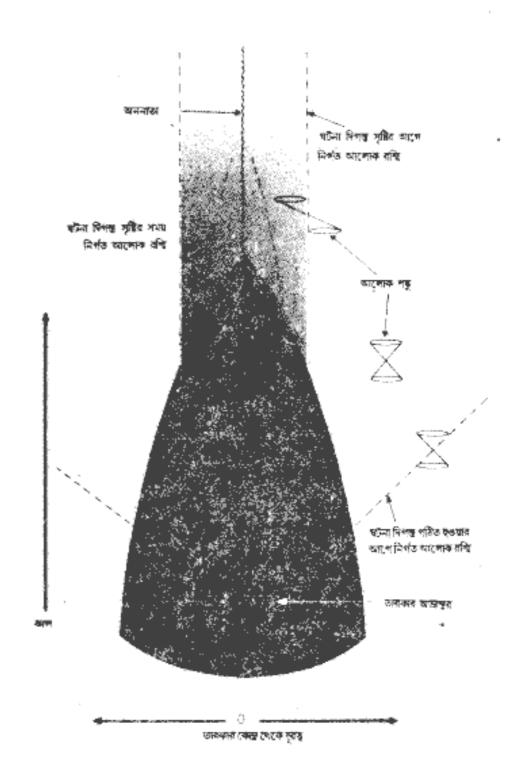
Ъb

ছিল অতীব গুরুত্বপূর্ণ। একটি তারকার ভর যদি চন্দ্রশেষর সীমার চাইত্রেকিম ছার তিহলে সেটা সম্ভাব্য অন্তিম দশায় "শ্বেত বামন" (white dwarf) রূপে স্থিতিলাভ করতে পারে। এগুলির ব্যাসার্য হয় কয়েক হাজার মাইল আর ঘনত্ব হয় প্রতি বর্গ ইঞ্চিতে কয়েক শ' টন। নিজ পদার্থের ভিতরকার ইলেকটুনগুলির অস্তবর্তী অপবর্জনতত্ত্বভিত্তিক বিকর্ষণই একটি স্থেত বামনকে রক্ষা করে (is supported)। বহু সংখ্যক এইরকম শ্বেত বামন তারকা আমরা পর্যক্ষেপ করে থাকি। প্রথম যে কটি এই ধরনের তারকা আবিষ্ণৃত হয়েছিল তার ভিতরে একটি সিরিয়াস (Sirius) নামক তারকাকে প্রদক্ষিণ করে। সিরিয়াস রাতের আকাশের উজ্জ্বতম তারকা।

ল্যান্ডো তারকার সন্তাব্য আর একটি অন্তিম দশার দিকে দৃষ্টি আকর্ষণ করেছিলেন।
এগুলির ভরের দীমা (limiting mass) সূর্যের এক কিম্বা দুই গুণের ভিতরে কিম্ব আকারে
এরা স্বেত বামনের চাইতেও ছোট। এই তারকাগুলিকেও রক্ষা করে অপবর্জনভত্ত্বভিত্তিক
বিকর্ষণা কিম্ব এই বিকর্ষণ আন্ত নিউট্রন একং প্রোটনের, তবে আন্ত ইলেকটুনের নয়। সেইজনা
এগুলিকে বলা হোত নিউট্রন তারকা। এগুলির ব্যাসার্য হয় মাত্র দশ মাইলের মতো কিম্ব
তার্দের ঘনত্ব হয় প্রতি ঘন ইঞ্চিতে কোটি কোটি টন। এগুলি সম্পর্কে যখন প্রথম ভবিষ্যদ্বাণী
করা হয় তথন নিউট্রন তারকা পর্যবেক্ষণের কোনো উপায় ছিল না। আসলে সেগুলি সনাক্ত
করা হয়েছে অনেক পরে।

অন্য দিকে আবার যে সমস্ত তারকার ভর চন্দ্রশেখর সীমার চাইতে বেশী, স্থালানী ষুরিয়ে গৈলে সেগুলিকে বিরাট সমস্যায় পড়তে হয়। কোনো কোনো ক্লেক্রে সেগুলিতে বিস্ফোরণ হয় আবার কোনো কোনো ক্ষেত্রে তারা নিজেদের ভর সীমার ভিতরে নিয়ে আসবার মতো যথেষ্ট পদার্থ পরিত্যাগ করতে সক্ষম হয়। ফলে তারা মহাকর্যের ক্রিয়ায় চুপ্সে যাওয়ার বিশর্যয় (catastrophic gravitational collapse) এড়াতে পারে। তারকাটি যত বড়ই হোক না কেন, এরকম যে সব সময়ই হবে সেটা বিশ্বাস করা বেশ শশু ছিল। তারকাটি কি করে জানবে যে তার ওজন কমাতে হবে? তাছাড়া প্রতিটি তারকাই যদি চুপ্সে যাওয়া এড়ানোর মতো যথেষ্ট পরিমাণ ভর পরিত্যাগ করতে সক্ষমও হয় তাহলে শ্বেত বামন কিল্লা নিউট্টন তারকার সঙ্গে সীমা ছাড়িয়ে যাওয়ার মতো অতিরিক্ত ভর যোগ করলে কি হবে ? ভাহলে কি সেটা চুশ্সে (collapse) অসীম ঘনত (infinite density) প্রাপ্ত হবে? এই ফলপ্রুতির সস্তাবনাতে এডিংটন প্রচণ্ড মানসিক আঘাত পান (shocked)। তিনি চন্দ্রশেখবের গবেষণার ফল বিশ্বাস করতে অস্বীকার করেন। এডিংনৈ ভেবেছিলেন, একটি তারকা চুপ্তস গিয়ে বিন্দুতে পরিণত হবে-- এরকম ব্যাপার একেবারেই অসম্ভব। এটাই ছিল অধিকাংশ বৈজ্ঞানিকের মত। আইনস্টাইন নিজে একটা প্রবন্ধে দাবী করেছিলেন তারকা সঙ্কুচিত হয়ে শূনা আয়তনে শৌহাবে না। অন্যান্য বৈজ্ঞানিকদের বিরুদ্ধতা, বিশেষ করে তাঁর অতীতের শিক্ষক এবং তারকার গঠন সম্পর্কে অগ্রগণ্য শক্তিত এডিংটনের বিরুদ্ধতার ফলে চন্দ্রশেখর এই গবেষণার ক্ষেত্র পরিত্যাগ করে জ্যোতির্বিজ্ঞানের (astronomy) অনা ক্ষেত্রে গবেষণা শুরু করেন। তাঁর গবেষণার একটি ক্ষেত্রে ছিল তারকাগুছেরে গতি (motion of star

্রিন্মির্যারিন্তি)। কিন্ত ১৯৮৩ সালে যখন তাঁকে নোবেল পুরস্কার দেওয়া হয় তখন অন্তত অংশত সে পুরস্কার দেওয়া হয়েছিল শীতল তারকার ভরের সীমা সম্পর্কীয় তাঁর আগেকার গবেষণার জন্য।


চন্দ্রশেখর দেখিয়েছিলেন অপবর্গনতত্ত্ব চন্দ্রশেশর সীমার চাইতে বেলী ভরসম্পন্ন তারকার চুশ্সে যাওয়া বন্ধ করতে পারে না। কিন্তু ব্যাপক অপেক্ষরাদ অনুসারে সেই তারকার কি হবে সেটা বোঝার সমস্যা ১৯৩৯ সালে প্রথম সমাধান করেছিলেন রবার্ট ওপেনহাইমার (Robert Oppenheimer) নামে এক তরুল আমেরিকান। কিন্তু তার গবেষণার ফলে মনে হয়েছিল তখনকার দিনে নুরবীক্ষণ যন্ত্রে পর্যবেক্ষণ করার মতো কেনো ফলপ্রুতি ঘটবে না। তারপর দ্বিতীয় বিশ্বযুদ্ধ এসে পড়ে এবং ওপেনহাইমার পরমাণু বোমা প্রকল্পে ঘনিষ্ঠভাবে জড়িয়ে পড়েন। যুদ্ধের পর মহাকর্ষের ফলে চুশ্সে যাওয়ার সমস্যা প্রায় স্বাই ভুলে যান। বেলীর ভাগ বৈজ্ঞানিকই তখন শরমাণু এবং কেন্দ্রকের (nucleus) মানের (scale) গবেষণায় জড়িয়ে পড়েন। ১৯৬০ এর দশকে কিন্তু ক্যোতির্বিজ্ঞান এবং বৃহৎমানে মহাবিশ্বতত্ত্ব সম্বন্ধীয় সমস্যা নিয়ে উৎস্কা দেখা দেয়। তার কারণ, আধুনিক প্রযুক্তিবিদ্যা প্রয়োগের গবেষণা তখন পুনরাবিদ্ধত হয় এবং ক্যেকজনের দ্বারা আরও বিস্তৃতি লাভ করে।

ওপেনহাইমারের গবেষণা থেকে এখন আমরা যে চিত্র পাই সেটা অনেকটা এইরকম : ভারকার মহাক্ষীয় ক্ষেত্র স্থান-কালে আলোকরশ্মির গতিপথের পরিবর্তন করে। অর্থাৎ ভারকাটি না থাকলে যে গতিপথ হওয়ার কথা ছিল তার তুলনায় অন্যারকম হয়। যে আলোক শতুগুলি (light cones) স্থান-কালে তাদের অগ্রভাগ থেকে নির্গত আলোকের গতিপথ নির্দেশ করে তারকার পৃষ্ঠের (surface) কাছাকাছি সেগুলি ভিতরদিকে সামান্য বেঁকে যায়। সূর্যগ্রহণের সময় দূরস্থিত তারকা থেকে নির্গত আলোকের বৈঁকে যাওয়া থেকে এটা বোঝা যায়। তারকাটি যেমন সন্তুচিত হয় তার প্রষ্ঠের (surface) মহাক্ষীয় ক্ষেত্রেও তেমনি শক্তিশালী হতে পাকে এবং আলোক শন্ধপ্রনি ভিতরদিকে আবো বেশী বেঁকে যায়। এর ফলে আমোত্রের নির্গত হওয়া আরো কঠিন হয়ে পড়ে এবং দুরস্থিত একজন পর্যবেক্ষকের দৃষ্টিতে সে আলোক ক্ষীণতর এবং লোহিওতর মনে হয়। শেষ পর্যন্ত তারকাটি যখন সম্ভূচিত হয়ে একটি বিশেষ ক্লান্তিক ব্যাসার্থ প্রাপ্ত হয় তখন পৃষ্টের মহাকর্ষীয় ক্ষেত্রে এমন শক্তিশালী হয় যে আলোক শঙ্কু ভিতরনিকে বেঁকে যায়। সে বক্রতা এত বেশী হয় যে আলোক আর সেখান খেকে নির্গত হতে পারে না (চিক্র-৬.১)। অপেক্ষবদে অনুসারে আলোকের চাইতে ফ্রন্ডগামী কিছু হতে পারে না। সুতরাং আলোক যদি নির্গত হতে না পারে তাহলে অন্য কিছুও নির্গত হতে পারে না। মহাক্ষীয় ক্ষেত্র সবকিছুকেই পিছন দিকে টেনে রাখে। সুতরাং একগুচ্ছ ঘটনা রইল: - স্থান-কালের একটি অঞ্চল যেখান থেকে নির্গত হয়ে দুরস্থিত কোনো পর্যবেশ্বকের কাছে পৌঁছানো সম্ভব নয়। এই অঞ্চলেরই আমরা নাম দিয়েছি কৃষ্ণগহুর। এর সীমানার নাম ঘটনাদিগন্ত (event horizon)। যে আলোক কৃষ্ণগহুৰ খেকে নিৰ্গত হতে পাৱেনি সেই আলোকের গতিপথের সঙ্গে এই দীমানার সমাপতন (coincule)ঘটে।

একটি তারকার চুপুসে গিয়ে কৃষ্ণগহুর হওয়া পর্যবেক্ষণ করতে হোকো আপনি কি 🗀 🗀 🗀 🗀 🗀 🗀 দেখকেন সেটা বৃথতে হলে মনে রাখতে হবে অংশক্ষবাদে কোনো পর্ম কালের (absolute time) অস্তিত্ব নেই । প্রত্যেক পর্যবেক্ষকেরই কাল সম্পর্কে তার নিজম্ব মাপন রয়েছে। একটি তারকার উপর অবস্থিত একটি ব্যক্তিসাপেক্ষ কাল দুরে অবস্থিত অন্য একটি ব্যক্তিসাপেক কালের চাইতে পৃথক হবে। এর কারণ, তারকাটির মহাক্ষীয় ক্ষেত্র। অনুমান করা যাক একজন সাহসী মহাকাশচারী একটি তারকার প্রষ্ঠে রয়েছেন। তারকাটি চুপ্সে যাঞ্চে। স**দ্ধে সঙ্গে মানুষটিও চুপ্রেস** ভিতর দিকে চলে যাছেছ। তার মহাকাশযান তারকাটিকে প্রদক্ষিণ করছে জার সে নিজের ঘড়ি অনুসারে নিজের মহাকাশযানকে প্রতি সেকেণ্ডে একটি করে সঙ্কেত পাঠাজে:। ধরা যাক ভারকাটি কোনো এক সময়ে— ধরুন ১১টার সময়— সঙ্কৃচিত হতে হতে ফ্রান্তিক ব্যাসার্থ (critical radius) অতিক্রম করে ক্ষুদ্রতর হয়ে যাবে। এই অবস্থায় মহাক্ষীয় ক্ষেত্রে এত শক্তিশালী হয় যে কোনো কিছুই সেখান থেকে নির্গত হতে পারে না। অতএব তার সঙ্কেতগুলিও আর মহাকাশযানে শৌঁহাবে না। এগারোটার কাছ্যকাছি সময়ে মহাকাশঘান থেকে তার পর্যকেজণকারী সঙ্গীরা দেখতে পাবে মহাকাশচারীর কাছ থেকে আসা ধারাবাহিক সন্তেতগুলির অন্তর্বতী সময় ক্রমল দীর্ঘতর হচ্ছে। কিন্ত দশটা বেজে উনষাট মিনিট **উনমাট সেকেণ্ড পর্যন্ত এই ক্রিয়া হবে অন্তি অল্প। মহাকাশচারীর প্রেরিত দশটা উনমাট মিনিট** আটার সেকেন্ডের সঞ্চেত একং তার নিঞ্জের ঘড়িতে যখন দশটা উনঘাট মিনিট উনঘাট সেকেন্ড ছয়েছে তখনকার প্রেরিত সঙ্কেতের অন্তর্বতী সময় সামান্য দীর্ঘতর হবে। কিন্তু এগারোটার সঙ্কেতের জন্য তাকে অনম্ভকাল অপেক্ষা করতে হবে। মহাকাশযান থেকে পর্যবেক্ষণ করলে দেখা যাবে মহাকাশচারীর ঘড়ির দশটা উনষাট মিনিট উনষাট সেকেণ্ড এবং এগারোটার মধাবতী সময়ে তারকার পৃষ্ঠ থেকে প্রেরিড আলোকসঙ্কেত অসীমকালে বিস্তৃত। ধারাবাহিক তরঙ্গগুলির মহাকাশবানে আগমনের অস্তর্বতী সময় ক্রমশ দীর্ঘতর হবে সূতরাং তারকা থেকে আগমনশীল আলোকও ক্রমণ বেশী লাল হবে এবং ক্ষীণতর হতে থাকবে। শেষ পর্যন্ত তারকাটি এত ক্ষীণপ্রত হবে যে সেটা আর মহাকাশযান থেকে দেখা ঘাবে না। অবশিষ্ট থাকবে শুধু স্থানে

করতে বাকবে এবং মহাকাশযানটিও কৃষ্ণগহুর প্রদক্ষিণ করতে থাকবে।
নিম্নলিখিত সমস্যার জন্য এই দৃশাপটিও কিন্তু সম্পূর্ণ বাস্তবানুগ নয়। তারকা থেকে
যত দ্রে যাবেন মহাকর্ষও তত দুর্বল হবে। সূত্রাং আমাদের সাহসী মহাকাশচারীর পায়ের
উপরে মহাক্ষীয় বল মাধার উপরকার মহাক্ষীয় বলের চাইতে সব সময়েই বেশী হবে।
বলের এই পার্যক্ষের ফলে তারকাটি সঙ্কুচিত হয়ে যে ক্লান্তিক ব্যাসার্থে (critical radius)
ঘটনা দিগন্ত (event horizon) সৃষ্টি হয়েছিল সে অবস্থায় পৌঁছানোর আগেই আমাদের
মহাকাশচারীক্তে হয় টেনে সেমাইয়ের মতো লক্ষা করে সেবে নয়তো হিছে ফেল্বের। আমাদের
কিন্তু বিশ্বাস মহাবিশ্বে ছায়াপান্তপির কেন্দ্রের মতো বৃহত্তর বন্ধ রয়েছে। সেগুলিও মহাকর্মের

একটি কৃষ্ণগহুর। তারকাটি কিন্তু মহাকাশবানটির উপর একই রকম মহাক্ষীয় বল প্রয়োগ

ফলে চুশ্সে কৃষ্ণগছরে পরিণত হতে পারে। এগুলির উপরে কোনো মহক্রিনারী থাকলে কৃষ্ণগহর হওয়ার আগে সে ছিঁড়ে টুকরো টুকরো হয়ে যাবে না। ক্রান্তিক ব্যাসার্থে পৌঁছানোর আগে তার কোনো বিশেষ অনুভৃতি হবে না। যে বিন্দু থেকে ফেরা যায় না সে বিন্দুও সে অতিক্রম করতে পারে কোনো কিছু লক্ষা না করেই। তবে অঞ্চলটা যখন চুপ্সে যেতে থাকবে তখন কয়েক ঘণ্টার ভিতরেই পায়ের সঙ্গে মাথার মহাক্ষীয় বলের পার্থকা এত বেশী হবে যে, সে ছিঁড়ে টুকরো টুকরো হয়ে যাবে।

১৯৬৫ সাল থেকে ১৯৭০ সালের ভিতরে আমি এবং রঞ্জার পেনরোজ্জ যে গবেষণা করেছিলাম তা থেকে দেখা গিয়েছে অপেক্ষবাদ অনুসারে কৃষ্ণগহুরের ভিতরে অসীম ঘনত্ত এবং স্থান-কাল বক্রতার অননাতা (singularity) থাকতেই হবে। এটা অনেকটা কালের আরছের সময়কার বৃহৎ বিশ্বেদারণের (big bang) মতো। শুধুমাত্র মহাকাশচারী আর যে বস্তপিশু চুপ্সে যাজে তাদের ক্ষেত্রে এ সময়টা হবে কালান্ত। এই আনন্যভায় (singularity) বিজ্ঞানের বিধি এবং আম্বাদের ভবিষ্যদ্বাণী করার ক্ষমতা ভেডে গড়বে। কিন্তু কৃষ্ণগহুরের বাইরে অবস্থিত কোনো পর্যবেক্ষকের ক্ষেত্রে এই ভবিষ্যম্বাণী করাব অক্ষমতায় কিছু এসে যায় না। তার কারণ কোনো আলোক কিন্ধা অন্য কোনো সঙ্গেতই এই অন্ন্যতা খেকে তার কাছে পৌঁছাতে পারে না। এই উল্লেখযোগ্য তথাই রজার পেনবোজের (Roger Penrose) মহাজাগতিক প্রহরতা প্রকল্পের (cosmic censorship hypothesis) পথিকৃৎ। এ কথাই অন্যভাবে বল্য যায় : 'ঈশ্বর নিরাবরণ অনন্যভাকে ঘৃণার সঙ্গে পরিহার করেন।" অন্য কথায় বলা যায় : মহাকর্ষের জন্য চুপ্সে যাওয়ার মতো অনন্যতা শুধুমাত্র কৃঞ্চগহুরের মতো স্থানেই হয়। সেখানে ঘটনা দিগন্ত দিয়ে বাইরের দৃষ্টি থেকে ঘটনাগুলিকে সৃষ্টুভাবে লুকিয়ে রাখা হয়। সঠিকভাবে বলতে গেলে বলা যায় এটাই শ্বন্ধবল মহাজ্ঞাগতিক প্রহ্বতা (weak cosmic censorship) প্রকল্প বলে পরিচিত। যে সমস্ত পর্যবেক্ষক কৃষ্ণগহুরের বাইরে থাকেন এই অনন্যতার ক্ষেত্রে ভবিষ্যদ্বাণী করার ক্ষমতা ভেঙে পড়ার ফলপ্রুতি থেকে তাঁদের বক্ষা করে এই বল্পবল মহাজাগতিক প্রহরতা প্রকল্প। তবে যে হতভাগ্য মহাকাশচারী গহুরে পড়ে ঘায় সে বেচারার জন্য কিন্তু এ প্রকল্প কিছুই করে না।

ব্যাপক অপেক্ষবাদের সমীকরণগুলির এমন কতগুলি সমাধান আছে যেগুলি অনুসারে আমাদের মহাকাশচারীর নিরাবরণ অন্যান্তা (naked singularity) দেখা সম্ভব। সে হয়টো অননাতায় ঠোকর খাওয়া এড়াতে সক্ষম হয়ে একটি সরু ছিন্ন (worm hole) নিয়ে তুকে মহাবিশ্বের অন্যা অঞ্চলে বেরিয়ে আসতে পারে। এর ফলে হান-কালে পরিপ্রমণের একটা বিরাট সুযোগ হতে পারে কিন্ত দুর্ভাগাক্রমে মনে হয় এ সমাধানগুলি খুবই অন্থির হওয়া সম্ভব। সর্বানিয় গোলমাল, এমন কি একজন মহাকাশচারীর উপস্থিতিও পরিস্থিতির এমন পরিবর্তন আনতে পারে যে, যতক্ষণ পর্যন্ত ঠোকর খেয়ে তার কাল শেষ না হয় ততক্ষণ পর্যন্ত হয়তো সে অননাতা দেখতেই পোল না। অন্য কথায়ে, অননাতা সব সময়েই থাকরে তার ভবিষাতে, অতীতে নয়। মহাজাগতিক প্রহরতা প্রকল্পের শক্তিশালী রূপের (version) বক্তব্য বাস্তব্য সমাধানের ক্ষেত্রে অননাতাগুলি হয় সব সময়ই থাকবে সম্পূর্ণভাবে ভবিষাতে (যেমন মহাক্ষীয় ক্রিয়ায় চুশ্সে যাওয়ার মতো অননাতা) কিন্তা থাকবে সম্পূর্ণভাবে ভবিষাতে (যেমন বৃহ্ন

বিষ্ফোরণ)। খুবই আশা করা যায় প্রহরতা প্রকল্পের কোনো কোনো রূপ সত্য হ.ব, তার কারণ নিরাবরণ অননাতার সনিকটে অতীতে পরিভ্রমণ করা সম্ভব হতে পারে। বৈজ্ঞানিক কল্পকাহিনী লেখকদের পক্ষে ব্যাপারটা খুবই ভাল কিন্তু কারো জীবনই নিরাপদ হবে না। যে কোনো লোক অতীতে প্রবেশ করে আপনাকে গর্ভে ধারণ করার আগেই আপনার বাবা মাকে হত্যা করতে পারে!

ঘটনা দিগন্ত (event horizon) অর্থাৎ স্থান-কালের যে অঞ্চল থেকে পালিয়ে আসা সন্তব নয় সেই অঞ্চলের সীমান্ত কৃষ্ণগহুরের চারপাশে একটা একমুখী (one way) ঝিল্লির (membrane) মতো কাজ করে। অসতর্ক মহাকাশচারীর মতো কোনো বস্তু ঘটনা দিগন্ত ভেদ করে কৃষ্ণগহুরে পতিত হতে পারে কিছু ঘটনা দিগন্ত ভেদ করে কৃষ্ণগহুর পতিত হতে পারে কিছু ঘটনা দিগন্ত ভেদ করে কোনো কিছুই কৃষ্ণগহুর থেকে বেরিয়ে আসতে পারবে না (মানে রাখবেন, যে আলোক কৃষ্ণগহুর থেকে পলায়ন করতে চাইছে স্থান-কালে সেই আলোকের গতিপথকেই বলে ঘটনা দিগন্ত এবং কোনো কিছুই আলোকের চাইতে দ্রুভ পরিভ্রমণ করতে পারে না)। নরকের প্রবেশদ্বার সম্পর্কে কবি দান্তে বলেছিলেন "যারা এখানে প্রবেশ করছো, তারা পরিত্যাগ করো সমস্ত আশা"। ঘটনা দিগন্ত সম্পর্কেও এরকম কথা বলা চলে। যে কোনো লোক কিয়া যে কোনো বস্তু ঘটনা দিগন্ত ভেদ করে পড়লে অচিরে অসীম ঘনত এবং কালান্তের অঞ্চলে পৌছে যাবে।

ব্যাপক অপেক্ষবাদের ভবিষ্যদ্বাণী হল : গুরুভার বস্ত্রপিণ্ড চলমান হলে মহাকর্ষীয় তরঞ্জ সৃষ্টি করবে। এই তরঙ্গগুলি স্থানের বক্রতায় সৃষ্ট তরঙ্গ। এগুলি পরিভ্রমণ করে আলোকের ক্রতিতে। এগুলি আলোক তরঞ্জের অনুরূপ। আলোক তরশ্বগুলিও বিদ্যুৎ-চুদ্বকীয় ক্ষেত্রের তরঙ্গ তবে মহাক্ষীয় তরঙ্গ সদ্ধান করে সনাক্ত করা আবো কঠিন। আলোক তরঙ্গের মতো এই তরঙ্গগুলিও যে সমস্ত বস্তুপিও থেকে নির্গত হয় সেগুলি থেকে শক্তি বহন করে দূরে নিয়ে যায়। সূতরাং আশা করা যায় ভারী বস্তুপিগুসম্পন্ন একটি তন্ত্র শেষ পর্যন্ত স্থিরাবস্থা প্রাপ্ত হবে। তার কারণ, মহাকর্ষীয় তরঙ্গ নির্গত হওয়ার ফলে যে কোনো গতির শক্তি দূরে পরিবাহিত হয়। (ব্যাপারটা অনেকটা একটি কর্ককে জলে ফেলার মতো। প্রথমে কর্কটি খুব খানিকটা ওঠানামা করে কিন্তু ডেউগুলি তার শক্তি বহন করে দূরে নিয়ে যায়, ফলে শেষ পর্যন্ত সেটা হিরাবস্থা প্রাপ্ত হয়)। উদাহরণ: পৃথিবী নিজ কক্ষে সূর্যকে প্রদক্ষিণ করে চলমান হলে তা থেকে মহাকর্ষীয় তরঙ্গ উৎপন্ন হয়। শক্তিক্ষয়ের ফলে পৃথিবীর কক্ষের পরিবর্তন হয়, সূতরাং ধীরে ধীরে পৃথিবীটা সূর্যের নিকটতর হতে থাকে। লেষ পর্যন্ত সূর্যের সঙ্গে সংঘর্ষ হয়ে ছিরাবস্থায় স্থিতিসাভ করে। সূর্য এবং পৃথিবীর ক্ষেত্রে শক্তিক্ষয়ের হার অত্যস্ত অর— একটি ছোট ইনেকট্রিক হীটার স্বালাতে যতটা শক্তি প্রয়োজন প্রায় ততটা। এর অর্থ হল পৃথিবীর সঙ্গে সূর্যের সংঘর্ষ হতে প্রায় এক হাজার মিলিয়ান মিলিয়ান মিলিয়ান বংসর লাগবে। সুতরাং আশু দৃশ্চিন্দার কোনো কারণ নেই। পৃথিবীর কক্ষের পরিবর্তন এড ঘীরে হয় যে পর্যবেক্ষণ করা সম্ভব নয়। তবে PSR ১৯১৩+১৬ নামে তম্মটি গত কয়েক বছর পরীক্ষা করে এই একই ক্রিয়া দেখা গিয়েছে (PSR এর অর্থ Pulsar-পালসার, এগুলি একটি বিশেষ ধরনের নিউট্রন তারকা। এ খেকে নিয়মিত বেতার তরক্ষম্পন্দন পাওয়া হায়)। এই তত্ত্বে রয়েছে দৃটি নিউট্রন তারকা। এরা শরম্পরকে প্রদক্ষিণ করে। মহাক্ষীয় তরঙ্গ

308

মহাকর্ষের ফলে একটি ভারকার চুপ্সে গিয়ে কৃষ্ণগহুর সৃষ্টি হওয়ার সময় গতি অনেক দ্রুততর হবে, সূতরাং তাদের শক্তিক্ষয়ের হারও দ্রুততর হবে। সূতরাং এদের ছিরাব**ছায়** স্থিত হতে খুব বেশী সময় লাগবে না। এই অন্তিম অবস্থা দেখতে কি রকম হবে ? অনুমান করা যেতে পারে যে সমস্ত উপাদান দিয়ে তারকাটি গঠিত হয়েছে সেগুলির সমস্ত জটিল অবয়বের উপর এটা নির্ভর করবে— শুধুমাত্র তার ভর এবং ঘুর্ণনের হারই নয়, এটা নির্ভর করবে ভারকাটির বিভিন্ন অংশের ঘনত্ব এবং <mark>ডারকাটির অভ্যস্তরের বায়বীয় পদার্থ</mark> গুলির (gases) জটিল গতির উপর। যে সমস্ত বস্তগুলি চুপ্সে গিয়ে কৃষ্ণগহরগুলি হয়েছে, কৃষ্ণগহরগুলির নিজেনেরও যদি সেরকম নানা রূপ হয় তাহজে সেগুলি সম্পর্কে সাধারণ মন্তবা করা সন্তিই খ্ব কঠিন হতে পারে।

কিন্তু ১৯৬৭ সালে ওয়ানার ইজরায়েল (Werner Israel) নামে কানাডার একজন বৈজ্ঞানিক কৃষ্ণগত্বর গবেষণায় বিপ্লব এনেছেন (ভদ্রলোকের জন্ম বার্লিনে, তিনি মানুষ হয়েছেন দক্ষিণ আফ্রিকায় এবং ডক্টরেট ডিগ্রী লাভ করেছেন আয়ার্ল্যাণ্ড থেকে)। ইজরায়েল দেখিয়েছেন ব্যাপক অপেক্ষবাদ অনুসারে যে সমস্ত কৃষ্ণগহর ঘূর্ণায়মান নয়, সেগুলির গঠন অবশাই খুব সরল (simple)। সেগুলি নির্ণুতভাবে গোলীয়। তাদের আয়তন নির্ভর জবে শুধুমাত্র তাদের ভরের উপর এবং যে কোনো দুটি কৃষ্ণগহরের ভর যদি এক হয় তাহলে রূপে ভারা অভিন। আসলে আইনস্টাইনের সমীকরণগুলির একটি বিশেষ সমাধানের সাহায়ে এগুলির বিবরণ দৈওয়া সম্ভব। এ সমাধানগুলি ১৯১৭ সাল থেকেই জানা। ব্যাপক অপেক্ষতাদ আবিচারের স্বল্পকাল পরেই কার্ল সোয়ার্জচাইল্ড (Karl Schwarzschild) এই সমাধান আবিষ্কার করেন। প্রথমদিকে অনেকেরই, এমনকি ইন্ধরায়েলের নিন্ধেরও যুক্তি হিল: যেন্তে কৃষ্ণগত্নগুলির নিখুঁত গোলীয় হতে হবে সূতরাং কৃষ্ণগহুর শুধুমাত্র নিখুঁত গোলীয় বঙ্গ চুপ্সে গিয়েই হতে পারে। কোনো বাস্তব্ তারকা কখনোই নিশ্বঁত গোলীয় নয়। সূতরাং একটি তারকা শুধুমাত্র নিরাবরণ অনন্যতাই (naked singularity) গঠন করতে পারে।

কিন্তু ইন্ধরায়েলের গবেষণাফলের অন্য একটি ব্যাখ্যাও ছিল। এই ব্যাখ্যা প্রস্তাব করেন রজার শেনরোজ (Roger Penrose) এবং বিশেষ করে জন হইলার (John Wheeler)। তাঁদের ঘৃক্তি ছিল: একটি তারকার চুপ্সে যাওয়ার সঙ্গে গতির যে দ্রুতি ভড়িত তার ফলে যে মহাক্ষীয় তরঙ্গুলি নির্গত হবে সেগুলি ক্রমশই তারকাটিকে আহো বেশী বেশী গোলীয় (spherical) করে তুলবে এবং যখন শ্বিরাবছা প্রাপ্ত হবে তখন ওটা হবে নিখুঁত ভাবে গোলীয়। এই দৃষ্টিভন্ধি অনুসারে যে কোনো ঘূর্ণনবিহীন তারকা মহাকর্ষের ফলে চুণ্সে গেলে নিখুঁত গোলীয় কৃষ্ণগহুরে পরিণত হবে। তারকাটির আকার এবং অস্কর্বতী গঠন যাই হোক না কেন, ঘটনাটি এই রকমই দাঁড়াবে। এই কৃষ্ণগছরের আয়তন নির্ভর করবে শুধুমাত্র তার ভরের উপর। পরবর্তী গণনা এই দৃষ্টিভঙ্গিই সমর্থন করেছে এবং খুবই তাভাতাড়ি এই মত সাধারণভাবে গৃহীত হয়েছে।

ইজরায়েলের গবেষণাফল শুধুমাত্র ঘুর্ণমহীন বস্তুপিশু খেকে সৃষ্ট কৃষ্ণগহর নিয়েই বিচার

্করেছে। ১৯৬৩ সালে নিউভিল্যাণ্ডের রয় কের (Roy Kerr) ব্যাপক অপেক্ষবাদের কয়েকটি সমীকরণের সমাধান আবিষ্কার করেন। সেগুলি ঘূর্ণায়মান কৃষ্ণগহুরের বিবরণ দিয়েছে। এই সমস্ত 'কের' কৃষ্ণগহরের ঘূর্ণনের হার স্থির। তাদের আকার এবং অবয়ব নির্ভর করে শুধুমাত্র তাদের ভর এবং ঘৃণনের হারের উপর। ঘৃর্ণনের হার যদি শুন্য হয় তাহ**েল কৃষ্ণগহুর হয়** নিপুঁতভাবে গোল। এই সমাধান এবং সোয়ার্জচাইশ্ভ সমাধান অভিন্ন। ঘূর্ণন যদি শুনা না হয় তাহলে কৃষ্ণগহুর নিজ বিষুবরেখা (equator) বরাবর ক্ষীতি লাভ করে (ঠিক যেমন সূর্য এবং পৃথিবী তাদের নিজস্ব ঘূর্ণনের ফলে ক্ষীতিলাভ করে) এবং ঘূর্ণন যত দ্রুত ছবে স্ফীতিও তত বেশী হবে। সূতরাং ইন্ধরা**ছেলের গবেষ**ণাফল ঘূর্ণায়মান বস্তুপিশুগুলির ক্লেন্তে বিচার করতে হলে অনুমান করতে হয় যে কোনো ঘূর্ণায়মান বন্তুপিও চুপ্সে গিয়ে কৃষ্ণগহুর সৃষ্টি করলে শেষ পর্যন্ত কের (Kerr) সমাধানে বিবৃত স্থিরাবন্ধায় স্থিত হবে।

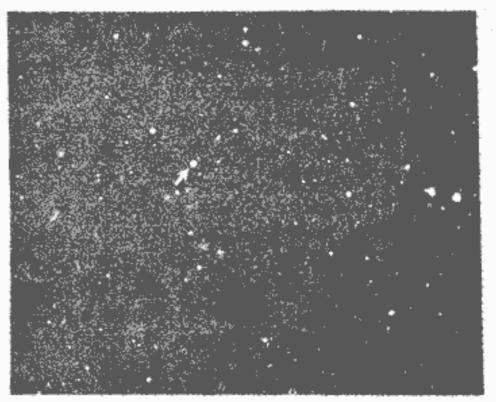
১৯৭০ সালে ব্রান্ডন কার্টার (Brandon Carter) নামে আমার একজন সহক্ষী এবং গবেষক ছাত্র এই অনুমান প্রমাণ করার প্রথম পদক্ষেপ গ্রহণ করেন : তিনি দেখিয়েছিলেন একটি ঘূর্ণায়মান ছির কৃষ্ণগহুরের অক্ষ যদি ঘূর্ণায়মান লাট্রুর মতো প্রতিসম (symmetrical) হয় তাহতে তার আকার এবং গঠন নির্ভর করবে শুধুমাত্র ভার ভর এবং ঘূর্ণনের হারের উপর। তারপর ১৯৭১ সালে আমি প্রমাণ করলাম: যে কোনো ছির ঘূর্ণায়মান কৃষ্ণগহুরের সতাই ঐরকম একটি প্রতিসম অক্ষ (axis of symmetry) থাকবে। শেষে ১৯৭৩ সালে লগুনের কিংস কলেঞ্জের ডেভিড রবিনসন (David Robinson) আমার এবং কার্টারের (Carter) গবেষণাফল ব্যবহার করে দেখালেন অনুমানটা সঠিক ছিল। এরকম একটি কৃষ্ণগহুরকে সতি।ই কের সমাধানের অনুগামী হতে হবে। সূতরাং মহাকর্ষের ক্রিয়ায় চুপ্সে যাওয়ার ফলে কৃষ্ণগহরটিকে এমন একটি অবস্থায় স্থিত হতে হবে যে অবস্থায় এটা ঘূর্ণায়মান হতে পারে কিছ স্পন্দনশীল (pulsating) হবে না। তাছাড়া এটার আয়তন এবং গঠন নির্ভর করবে শুধুমাত্রা এর ভর এবং ঘূর্ণনের হারের উপর— যে বস্তুপিশু চুপ্সে গিয়ে কৃষ্ণগহুরটি তৈরী হয়েছে তার প্রকৃতির (nature) উপর নয়। গবেষণাফলটি পরিচিত হয় এই প্রবচন দিয়ে "একটি কৃষ্ণগহুরের কোনো লোম নেই"। "লোম নেই" উপপাদ্যটির ব্যবহারিক গুরুত্ব বিরাট। কারণ এ উপপাদ্য কৃষ্ণগহরগুলির সম্ভাব্য ক্রপগুলিকে অতীব সীমিত করে। সূতরাং যে সমস্ত বস্তুপিণ্ডের ভিতর কৃষ্ণগহুরের অস্তিত্ব সম্ভব সেগুলির পুঞ্জানুপুঞ্জ প্রতিক্রপ গঠন করে সেগুলির ভবিষ্যদ্বাণীর সঙ্গে পর্যবেক্ষণফলের তুলনা করা যায়। এ তথ্যের অন্য অর্থ হল: যে বঙ্গণিশু চুপ্সে কৃষ্ণগহর সৃষ্টি হয়েছে, কৃষ্ণগহর সৃষ্টি হওয়ার সময় সেই বস্তুপিশুটি সম্পর্কে অনেক সংবাদ নিশ্চয়ই হারিয়ে গিয়েছে। কারণ, পরবর্তীকালে আমাদের পক্ষে শুধুমাত্র সেটার ভর এবং ঘূর্ণনের হার মাপাই সম্ভব। পরের অধ্যায়ে এ তথোর গুরুত্ব বোঝা যাবে।

বিজ্ঞানের ইতিহাসে স্বল্পসংখ্যক এমন কয়েকটি মাত্র ক্ষেত্র আছে যেখানে পর্যবেক্ষণ দ্বারা সভ্যতা প্রমাণিত হওয়ার আগেই বিস্তৃত গাণিতিক প্রতিরাপ (mathematical model) রূপে একটি তত্ত্ব (theory) বিকাশলাভ করেছে। কৃষ্ণগহুর তত্ত্ব সেগুলির ভিতরে একটি। আসলে কৃষ্ণগহুর বিরোধীদের এটাই ছিল একটি প্রধান যুক্তি: যে বস্তুর একমাত্র সাক্ষ্য ব্যাপক

অপেক্ষবাদ নামক একটি সন্দেহজনক তত্ত্বের ডিত্তিতে গণনা সে বস্তুত্তি কিরে বিশ্বাস করা যেতে পারে? কিন্তু ১৯৬৩ সালে মার্টেন স্মিড্ট (Maarten Schmidt) নামে ক্যালিফোর্নিয়ার পালোমার অবজারভেটরীর (Palomar Observatory) একজন জ্যোতির্বিজ্ঞানী স্বল্পপ্রভ (faint) তারকার মতো একটি বস্তর আলোকের লোহিত বিচ্নুতি (red shift) মাপেন। বিচ্যুতিটা ছিল ৩ সি ২ ৭৬ নামক বেতার তরক্লের উৎস অভিমূখে (অর্থাৎ কেখ্রিজ বিশ্ববিদ্যালয়ের বেতার উৎসের তৃতীয় তালিকার ২ ৭৩ নম্বর)। তিনি দেখলেন মহাক্ষীয় ক্ষেত্রের ফলে বিচ্যুতির তুলনায় এ বিচ্যুতি অনেক বেশী। এটা মহাকর্ষীয় লোহিত বিচ্যুতি হলে বস্তুটি এত বৃহৎ এবং আমাদের এত নিকটে হোত যে সৌরজগতের গ্রহগুলির কক্ষের গোলমাল (disturb) সৃষ্টি করত। এর থেকে মনে হয়েছিল লোহিত বিচ্যুতির কারণ মহাবিশ্বের সম্প্রসারণ। তার অর্থ বস্তুপিগুটি বহু দূরে অবস্থিত। অত দূর থেকে দৃষ্টিগোচর হতে হজে বস্তুপিশুটিকে খুবই উজ্জ্বল হতে হবে। অন্য কথায় তা থেকে বিরাট পরিমাণ শক্তি নিগত হওয়া আবশ্যিক। এই বিরাট পরিমাণ শক্তি উৎপন্ন করার যে একমাত্র প্রক্রিয়া মানুষের মনে আসতে পারে সেটা হল : মহাকর্ষের ক্রিয়ায় শুধু একটি তারকার চুপসে যাওয়া (gravitational collapse) নয়, চুপসে যাওয়া একটি নীহারিকার কেন্দ্রীয় অঞ্চলের সমস্তটা। এইরকম— প্রায় তারকার মতো- কয়েকটি বস্তুপিশু আবিষ্কৃত হয়েছে। সেগুলির নাম কোয়াসার (quasistellar objects- প্রায় তারকার মতো বস্ত)। এগুলির প্রত্যেকটিরই বৃহৎ পরিমাণ লোহিত বিচাতি আছে। কিন্তু সেগুলি এত বেশী দূরে অবস্থিত যে সেগুলি পর্যবেক্ষণ করে কৃষ্ণগহুর সম্পর্কে সিদ্ধান্তমূলক প্রমাণ সংগ্রহ করা খুবই শক্ত।

জোসেলিন বেল (Jocelyn Bell) নামে কেম্ব্রিজের একজন গবেষক ছাত্রী ১৯৬৭ সালে আকাশে এমন কতগুলি বস্তু আবিষ্কার করেন যা থেকে নিয়মিত বেতার তরক্ষের স্পন্দন নির্গত হয়। এই ঘটনায় কৃষ্ণগহর সম্পর্কে উৎসাই আরও বাড়ে। প্রথমে বেল এবং তাঁর ভদ্বাবধায়ক (supervisor) আাটনি হিউইস (Antony Hewish) ভেবেছিলেন তাঁরা হয়তো মীহারিকার ভিতরে অন্য একটি সভাতার সংস্পর্শে এসেছেন। আমার মনে আছে যে সেমিনারে (seminar--- শিক্ষাকেন্দ্রের আলোচনা সভা) তারা তাঁদের আবিষ্কার ঘোষণা করেছিলেন সেখানে আবিষ্কৃত প্রথম চারটি উৎসের নাম দিয়েছিলেন LGM 1-4, LGM এর অর্থ Little Green Men (ছোট সবুৰু মানুষ)। শেষ পৰ্যন্ত কিন্তু তাঁরা এই বস্তগুলি সম্পর্কে অনেক কম রোমাঞ্চকর সিদ্ধান্তে আসেন। এগুলির নাম দেওয়া হয় পালসার (pulsar-স্পন্দমান) এগুলি ছিল আসলে ঘূর্ণায়মনে নিউট্রন তারকা। এগুলি থেকে নিয়মিত বেতার তরক্বের স্পন্দন (pulse) নির্গত হয়। এর কারণ টৌম্বক ক্ষেত্র এবং পরিবেষ্টমীর পদার্থের (surrounding) ভিতর জটিল পারম্পরিক ক্রিয়া। যাঁরা ম্পেস্ (space-স্থান) সম্পর্কে রোমাগুকর উপন্যাস লেখেন তাঁদের কাছে এটি ছিল দুঃসংবাদ। কিন্তু আমাদের মতো যে ক'জন স্বল্পসংখ্যক লোক সে সময় কৃষ্ণগহুরে বিশ্বাস করত তাদের কাছে এ সংবাদ ছিল অতীব আশাপ্রদ। নিউট্রন তারকার অক্তিত্ব সম্পর্কে এটাই ছিল প্রথম ইতিবাচক সাক্ষ্য। একটি নিউট্রন তারকার ব্যাসার্য হবে প্রায় দশ মাইল। যে ক্রান্তিক ব্যাসার্থে একটি তারকা কৃষ্ণগ্রুরে পরিণত হয় এই ব্যাসার্ধ

ছিল তার চাইতে মাত্র কয়েক গুণ বেশি। একটি তারকা যদি চুপসে অত ক্ষুদ্রাকার হতে পারে তাহলে অন্য অনেক তারকাও যে চুপ্সে কৃষ্ণগহরে পরিণত হতে পারে এ রকম আশা করা অযৌত্তিক নয়।

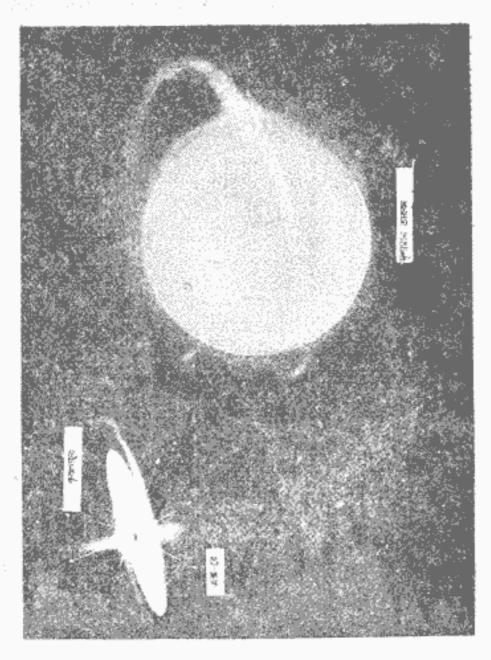

সংজ্ঞা অনুসারে কৃষ্ণগহুর থেকে কোনো আলোক নির্গত হয় না। তাহলে আমরা কৃষ্ণগহুর খুঁজে বার করার আশা করব কি করে? ব্যাপারটি প্রায় কয়লা গুদামে কালো বেডাল খোঁজার মতো। সৌভাগ্যক্রমে উপায় একটি আছে। ১৭৮৩ সালের জন মিচেলের (John Michell) গবেষণাপত্র এ বিষয়ে পথ প্রদর্শন করেছে (pioneering) । কৃষ্ণগহুর হলেও তারা নিকটবর্তী বন্তগুলির উপর মহাক্ষীয় বল প্রয়োগ করে। জ্যোতির্বিজ্ঞানীরা এমন বহু তম্ভ (system) পর্যবেক্ষণ করেছেন যেখানে একটি তারকা অনা একটি তারকাকে প্রদক্ষিণ করে। এর কারণ পারস্পরিক মহাক্ষীয় আকর্ষণ। এমন তন্ত্রও দেখা যায় যেখানে একটি তারকাই দৃশামান। সে তারকাটি প্রদক্ষিণ করছে একটি অদৃশ্য সঙ্গীকে। সঙ্গীটি একটি কৃষ্ণগহুর এ রক্তম তাৎক্ষণিক সিদ্ধান্ত করা যায় না। এটা এমন তারকা হতে পারে যেটা এত স্বল্পশুভ যে দেখা যায় না। কিন্তু এইরকম কিছু কিছু তম্ব শক্তিশালী এশ্ব-রের উৎস। সিগনাস X-১ (Cygnus X-1, চিত্র—৬.২) এইরকম একটি তস্ত্র। এর সবচাইতে ভাল ব্যাখ্যা হল: দৃশামান ভারকাটির উপরের ন্তর থেকে পদার্থ উড়ে বেরিয়ে গিয়েছে (blown off)। অদৃশ্য সঙ্গীর নিকে পতনের সময় দৃশ্যমান তারকাটিতে একটি সর্পিল গতি (spiral motion) সৃষ্টি হয় (স্লানের টব থেকে জল বেরিয়ে যাওয়ার সময় যে রকম হয়, অনেকটা সেইরকম) এবং অত্যন্ত উত্তপ্ত হয়ে তা থেকে এন্ধ-রে নির্গত হতে থাকে (চিত্র-৬.৩)। এই প্রক্রিয়া হতে হলে অদৃশ্য বস্তুটিকে স্থেত বামন (white dwarf) নিউট্রন তারকা কিম্বা কৃষ্ণগহরের মতো অত্যন্ত ক্ষুদ্র হতে হবে। দুশামান ভারকাটির কক্ষ পর্যবেক্ষণ করে অদুশ্য বস্তুটির সন্তাব্য সর্বনিমু ভর নির্ধারণ করা যায়। সিগনাস এশ্র–১-এর ক্ষেত্রে এই ভর সূর্যের ভরের ছয়গুণ। চন্দ্রশেখরের গবেষণাফল অনুসারে অদৃশ্য বস্তুটির শ্বেড বায়ন ইওয়ার শক্ষে এই ভর অঁতাধিক (too great) । নিউট্রন তারকা হওয়ার পক্ষেও এই ভর অতাধিক (too large) । সূতরাং মনে হয় অবশ্যই এটা কৃষ্ণগহুর।

কৃষ্ণগহুর ছাড়াও সিগনাস এয়-১ ব্যাখ্যা করার মতো অন্যানা প্রতিরূপ আছে কিষ্
সেগুলির সবকটিই কষ্টকল্পিত। কৃষ্ণগহুরই মনে হয় এই সমস্ত পর্যবেক্ষণের সত্যিকারের স্বাভাবিক
ব্যাখ্যা। এ সল্পেও ক্যালিফোর্নিয়া ইন্সটিটুটি অব টেকনোলজির কিপ থর্নের (Kip Thorne)
সঙ্গে আমার একটি বাজি আছে। বাজির বিষয়: আসলে সিগনাস এয়-১-এ কোনো কৃষ্ণগহুর
নেই। বাজিটা আমার কাছে একটি ইনস্যুরেল পলিসির মতো। কৃষ্ণগহুরের উপর আমি অনেক
গবেষণা করেছি। যদি দেখা যায় কৃষ্ণগহুর বলে কিছু নেই তাহুলে আমার সমস্ত গবেষণাকর্মই
নিক্ষল হবে। কিছু সে ক্রেন্সে আমার সাজুনা হবে বাজি জেতা। বাজি জিতলে আমি চার
বছর প্রাইডেট আই (Private Eye) পত্রিকাটি পাব। আর যদি কৃষ্ণগহুরের অন্তিত্ব থাকে
তাহুলে কিপ এক বছর পেন্টছাউস ((Penthouse) পত্রিকা পাবে। ১৯৭৫ সালে যখন
আমরা বাজি ধরেছিলাম তখন আমরা প্রায় শতকরা আশিভাগ নিশ্চিত ছিলাম যে সিগনাস

একটি কৃষ্ণগহুর। এখন আমরা প্রায় শতকরা পর্চানব্যুই ভাগ নিশ্চিত কিন্তু বিচ্ছিত্র নিশ্রন্তিনি টিলানি CC হওয়া এখনও বাকি।

আমাদের মীহারিঞ্চার সিগনাস এম্ব - ১ এর মতো একাধিক তন্ত্রে এবং আমাদের প্রতিবৈশী মেগালেনিক ক্লাউড (Magellanic Clouds) নামক দুটি নীহারিকাতে কয়েকটি কৃষ্ণগহুরের অস্তিত্তের সাক্ষ্য আমরা শেয়েছি। কিন্ধ কৃঞ্চগহুরের সংখ্যা নিশ্চয়ই অনেক বেশী। মহাবিশ্বের দীর্ঘ ইতিহাসে বন্থ তারকা নিশ্চয়ই তাদের পারমাণবিক ভালানী পুড়িয়ে শেষ করেছে এবং চুপ্সে যেতে বাধ্য ইয়েছে। কৃষ্ণগহুরের সংখ্যা দৃশামান তারকার চাইতে বেশীও হতে পারে। ভথমত্রে আমাদের নীহারিকাতেই দুশামান তারকার সংখ্যা প্রায় দশ হাজার কোটি। এই বিরাট সংখ্যক কৃষ্ণগছরজাত অতিরিক্ত মহাক্ষীয় আকর্ষণ আমাদের নীহারিকার বাস্তব ঘূর্ণনের হার য্যাখ্যা করতে পারে। দৃশ্যমান তারকার ভর এ ব্যাখ্যার পক্ষে পর্যাপ্ত নয়। আমাদের নীহারিকার ক্ষেন্তে এর চাইতে অনেক বেশী বড় একটি কৃষ্ণগহরের অন্তিত্বের কিছু সাক্ষ্য আমাদের আছে। সেই কৃষ্ণগহরের ভর আমাদের সূর্যের ভরের চাইতে প্রায় এক লক্ষ গুণ বেশী। কোনো তারকা কৃষ্ণগহুরের খুব কাছাকাছি এলে তার নিকটতর এবং দূরতর অংশে মহাক্ষীয় প্রাকর্ষণের পার্থক্যের জন্য তারকাটি ছিন্ন হয়ে যাবে। তাদের অবশিষ্টাংশ এবং অন্যান্য তারকা খেকে যে সমস্ত বায়বীয় পদার্থ নির্গত হয়েছে সবই গিয়ে পড়বে ঐ কৃষ্ণগহরের দিকে। সিগনাস এক্স-১ এর ক্ষেত্রের মতো এ ক্ষেত্রেও বায়বীয় পদার্থগুলি সর্লিল গতিতে ভিতরে চুক্তবে আর উত্তপ্ত হবে। তবে সে ক্ষেত্রে যতটা উত্তপ্ত হয়েছিল ততটা নয়। এটা এস্থ-রে নির্গত হওয়ার মতো উত্তপ্ত হবে না। কিছু আমাদের নীহারিকার কেন্দ্রে অত্যস্ত ঘন সন্নিবিষ্ট বৈতার তরঙ্গ এবং অবলোহিত রশিরে উৎসের ব্যাখ্যা এর ভিত্তিতে দেওয়া যেতে পারে।

মনে হয় কোয়াসারগুলির কেন্দ্রে এইরকম কিন্তু এর চাইতেও বড় কৃষ্ণগহুর রয়েছে। সেগুলির ভর আমাদের সূর্যের ভরের চাইতে প্রায় দল কোটি গুণ বেশী। এই বস্তুগুলি থেকে ছে বিশাল পরিমাণ শক্তি নির্গত হয় তার উৎসের একমাত্র ব্যাখ্যা হতে পারে ঐ বিশাল ভরসম্পন্ন কৃষ্ণগহুরের ভিতর পতনশীল পদার্থ। কৃষ্ণগহুরের ভিতর পদার্থের সর্পিল গতি (spiral) কৃষ্ণগহুরের ভিতর পতনশীল পদার্থ কৃষ্ণগহুরের নিকটে অতি উচ্চশক্তি সম্পন্ন কণিকা সৃষ্টি হয়। ভিতরে পতনশীল পদার্থ কৃষ্ণগহুরের নিকটে অতি উচ্চশক্তি সম্পন্ন কণিকা সৃষ্টি করবে। এর টোম্বক ক্ষেত্র এত শক্তিশালী হবে যে এই কণিকাগুলিকে কেন্দ্রীভূত করে কৃষ্ণগহুরের ঘূর্ণনের ভক্ষ বরাবর ক্যোমারার মতো নিক্ষেপ করতে পারবে। অর্থাৎ নিক্ষেপ করবে কৃষ্ণগহুরের উত্তর এবং দক্ষিণ মেক অভিমুখে। কয়েকটি নীহারিকা এবং কোয়াসারে সতিটে এরকম কোয়ারা (jets) দেখা যায়।



চিত্র - ৬.২

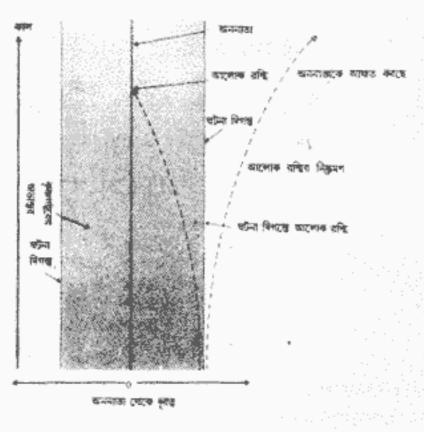
আলোকচিত্রের কেন্দ্রে দৃটি উচ্ছাপতর তারকা। Signus X া, মনে হয় এতে রচেছে একটি কৃষ্ণগত্নর এবং একটি স্বাতাবিক তারকা, এরা শরস্পরকে প্রদক্ষিণ করছে।

সূর্যের চাইতে অনেক কম ভরসম্পন্ন কৃষ্ণগহুরের অস্তিত্বের সন্তাবনা বিচার করা যেতে পারে। মহাকর্যের দরন চুপ্সে যাওয়ার (gravitational collapse) ফলে এরকম কৃষ্ণগহুর গঠিত হতে পারে না। কারণ এগুলির ভর চন্দ্রশেষর ভর সীমার চাইতে কম। স্বল্প ভরসম্পন্ন এই কৃষ্ণগহুরগুলির নিজস্ব পারমাণবিক স্বালানী ফুরিয়ে গেলেও তারা নিজেদের রক্ষা করতে পারে। শুধুমাত্র অতান্ত বৃহৎ বহিরাগত চাপের ফলে পদার্থ বিরাট ঘনত্ব সম্পন্ন হলেই স্বল্প ভরসম্পন্ন কৃষ্ণগহুর সৃষ্টি হওয়ার সন্তাবনা। অতিবৃহৎ হাইড্রোজেন বোমাতেও এরকম অবস্থা সৃষ্টি হতে পারে। পদার্থবিদ্যাবিদ জন শুইলার (John Wheeler) একবার হিসাব করে বলেছিলেন পৃথিবীর সমস্ত সাগরের সবটা ভারী জল দিয়ে যদি একটি হাইড্রোজেন বোমা তৈরী করা যায় তাহলে তার কেন্দ্রে একটি কৃষ্ণগহুর সৃষ্টি হওয়ার মতো চাপ সৃষ্টি হতে পারে। (অবশ্য সেটা পর্যবেক্ষণ করার মতো কোনা লোক অবশিষ্ট থাকবে না!) আরো একটি বাস্তব সন্তাবনা হল: মহাবিশ্বের অতি আদিম অবস্থার প্রচন্ত চাপ ও তাপে এই রকম স্বল্প ভরসম্পন্ন কৃষ্ণগহুর গঠিত হয়ে থাকতে পারে। আদিম মহাবিশ্ব যদি নিপুত মসৃণ না থেকে থাকে একমাত্র তাহনেই কৃষ্ণগহুর গঠিত হথের সম্ভাবনার অন্তিপ্ত সম্ভব। তার কারণ

ভধুমাত্র এমন একটি কুদ্র অঞ্চল যদি থাকে, যেখানকার ঘনত্ব গড় খনুত্বের চাইড়ে বেশী 🗎 🗀 🗀 🗀

চিন্ন - ৬.৩

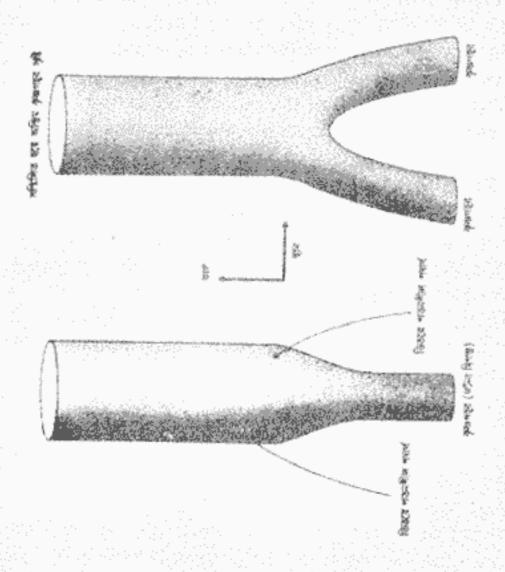
তাহলে চাপের ফলে সেখানে কৃষ্ণগহর সৃষ্টি হতে পারে। কিন্তু আমরা জানি কিছু অসমান্ততা ছিল, তাছাড়া বর্তমান যুগেও তারকা এবং নীহারিকা রূপে জমে না গিয়ে মহাবিশ্বের পদার্থ নিবুঁত সমরূপে বন্টিত থাকত।


তারকা এবং নীহারিকা গঠনের জন্য যে পরিমাণ অসমাঙ্গতা (irregularity) প্রয়োজন তার ফলে লক্ষণীয় সংখ্যায় "আদিম (primordial)" কৃষ্ণগহুর সৃষ্টি হতে পারত কিনা সেটা স্পষ্টতই নির্ভর করবে আদিম মহাবিশ্বের অবস্থার খুঁটিনাটির উপর। সূতরাং বর্তমানে কতগুলি আদিম কৃষ্ণগহর রয়েছে সেটা যদি নির্ধারণ করতে পারি তাহলে আমরা মহাকাশের প্রাথমিক অবস্থা সম্পর্কে অনেক কিছুই জানতে পারব। শুধুমাত্র অন্য দৃশ্যমান পদার্থের উপর এবং মহাবিশ্বে সম্প্রসারণের উপর মহাকর্ষীয় প্রভাবের সাহায়ে একশ কোটি টনের (একটি বড় পাহাড়ের ভরের সমান) বেশী ওজনের আদিম কৃষ্ণগহরের সন্ধান পাওয়া যেতে পারে। যাই হোক, পরের অধ্যায়ে আমরা দেখব কৃষ্ণগহরগুলি সভিাই কৃষ্ণ নয়। তারা উত্তপ্ত বন্ধপিশুর মতো তাপদিপ্র হয়। এগুলি যত ছোট হয় দীপ্তিও এদের তত বেশী হয়। সূতরাং ভগাটা স্ববিরোধী হলেও ক্ষুদ্রতর কৃষ্ণগহরগুলির সন্ধান পাওয়া হয়তো সহজ্বতর হবে।

daintemet

কৃষ্ণগহুর অত কালো নয় (Black Holes Ain't So Black)

১৯৭০ সালের আগে আমার ব্যাপক অপেক্ষবাদ সম্পর্কীয় গ্রেষণার প্রধান বিষয়গুলি ছিল বৃহৎ বিশ্বোর্যদের অনন্যতা (big bang singularity) ঘটেছিল কিনা সেই প্রশ্ন নিয়ে। কিন্তু সেই বছর নভেম্বরে আমার মেয়ে লুসির জন্মের অল্পদিন পর এক বিকেলবেলা শুতে যাবার সময় আমি কৃষ্ণগহর সম্পর্কে ভারতে শুরু করি। অসুস্থতার দর্শন আমার শুতে যেতে সময় লাগে সূত্রাং আমি প্রচুর সময় পেয়েছিলাম। সেই সময় ছান-কালের কোন কোন বিন্দু কৃষ্ণগহরের বাইরে এবং কোনগুলি ভিতরে এ সম্পর্কে কোনো সঠিক সংজ্ঞা ছিল না। কৃষ্ণগহর এমন এক কেতা ঘটনা (set of events) যেখান থেকে কেশী দূরে পলায়ন সম্ভব নম্ম কৃষ্ণগহরের এই রক্তম একটি সংজ্ঞার ধারণা নিয়ে এর আগেই আমি রজার পেনরোজের সঙ্গে আলোচনা করেছিলাম। বর্তমানে এই সংজ্ঞাই সাধারণভাবে গৃহীত হয়েছে। এর অর্থ হল কৃষ্ণগহরের সীমানা অর্থাৎ ঘটনা দিগস্ত (event horizon) গঠিত হয় সেই সমস্ত আলোকরশ্মির পথরেখা নিয়ে যে রশ্মিগুলি কৃষ্ণগহর থেকে নিদ্ধান্ত হতে পারেনি। সেগুলি অনন্তকাল ধরে সীমানায় ঘোরাফেরা করে (চিত্র — ৭.১)। বাাপারটা অনেকটা পুলিশের হাত থেকে এক পা এগিয়ে আছে কিন্ত একেবারে পালিয়ে যেতে পারছে না।


হঠাৎ আমি বুঝতে পারলাম এই আলোকরশ্মিগুলির পথ কখনোই পরস্পরের অভিমূখে যেতে পারে না। যদি যায় ভাহলে শেষ পর্যন্ত একটি অপরটির গায়ে গিয়ে পড়বে। এটা অনেকটা এমন লোকের সঙ্গে দেখা হওয়া যে পুলিশের কাছ থেকে পালাছে কিন্তু বিপরীত অভিমূখে— তোমরা দুজনেই ধরা পড়বে! (কিন্তা এক্ষেত্রে কৃষ্ণগহুরে পতিত হওয়া)। কিন্তু এই আলোকরশ্মিগুলিকে যদি কৃষ্ণগহর গ্রাস করত তাহলে তারা কখনোই কৃষ্ণগহরের সীমানার ি । ি । ি । СО । । । যেতে পারত না। সুতরাং ঘটনা দিগস্তে আলোকরশ্মির গতিপথ হতে হোত সব সময়ই

চিক্ৰ- ৭-১

হয় সমান্তরাল, নয়তো পরস্পর থেকে দৃরগামী। অনা দৃষ্টিভঙ্গিতেও দেখা যায়, সেটা হল: ঘটনা দিগস্ত অর্থাৎ কৃষ্ণগহুরের সীমানা অনেকটা ছায়ার কিনারার মতো—ছায়াটি আসন্ন মৃত্যুর। সূর্যের মতো বহুদূরে অবস্থিত একটি উৎসের আলোকে যে ছায়া পড়ে তার দিকে তাকালে আপনি দেখতে পাবেন কিনারার আলোকরশ্মিগুলি পরস্পর অতিমুখগামী নয়।

ঘটনা দিগস্ত থেকে নির্গত আলোকরশ্মিগুলি অর্থাৎ কৃষ্ণগহুরের সীমানা যদি কখনোই প্রস্পর অভিমুখী না হয় তাহলে ঘটনা দিগন্তের ক্ষেত্রের আয়তন (area) হয় একই থাকরে নায়তো কালের সঙ্গে বৃদ্ধি পাবে কিন্তু কখনোই হ্রাস পাবে না। কারণ হ্রাস পাবার অর্থ: সীমানার কিছু আলোকরশ্মিকে অন্তত পরস্পরের অভিমুখগামী হতে হবে। আসলে যখনই পদার্থ কিয়া বিকিরণ কৃষ্ণগহুরে পতিত হবে তখনই তার ক্ষেত্রেক বৃদ্ধি পাবে (চিত্র— ৭.২), কিস্তা যদি দৃটি কৃষ্ণগহুর পরস্পর সংঘর্ষের পর মিলিত হয়ে একটি কৃষ্ণগহুরে পরিশত হয় তাহলে অন্তিম কৃষ্ণগহুরের ঘটনা দিগন্তের ক্ষেত্রের আয়তন প্রথমের দৃটি কৃষ্ণগহুরের ঘটনা দিগন্তের ক্ষেত্রের আয়তনের যোগফলের সমান হবে কিয়া তার চাইতে বেলী হবে (চিত্র—৭.৩)। ঘটনা দিগন্তের ক্ষেত্রের আয়তনের যোগফলের স্থানা হবে কিয়া তার চাইতে বেলী হবে (চিত্র—৭.৩)। ঘটনা দিগন্তের ক্ষেত্রের আয়তনের হাসপ্রাপ্তি না হওয়া ধ্যটি কৃষ্ণগহুরের সম্ভাব্য আচরণের একটি গুরুত্বপূর্ণ গভী বেঁথে দিল (important restriction)) এই আবিষ্কারে আমি এমনই

हिल- १.२ वन्द हिल- १.०

উত্তেজিত হয়েছিলাম যে সে রাত্রে আমার ঘূম খুব বেশী হয়নি। পরের নিন আমি রজার। শেনরোজকে টেলিফোন করি। তিনি আমার সঙ্গে একমত হন। আমার মনে হয় আসলে ক্ষেত্রের (area) এই ধর্ম তাঁর আগে থেকেই জানা ছিল। কিন্তু তিনি কৃষ্ণগহুরের সামানা পূথক একটি সংজ্ঞা ব্যবহার করছিলেন। তিনি বুঝতে পারেন নি যে দুটি সংজ্ঞা অনুসারেই কৃষ্ণগহরের সীমানা অভিন্ন হবে। সূতরাং তার ক্ষেত্রফলও হবে অভিন্ন— অবশ্য কৃষ্ণগহরটি যদি এমন অবস্থায় স্থিতিলার্ড করে যে কালের সঙ্গে সে আর পরিবর্তিত হচ্ছে না।

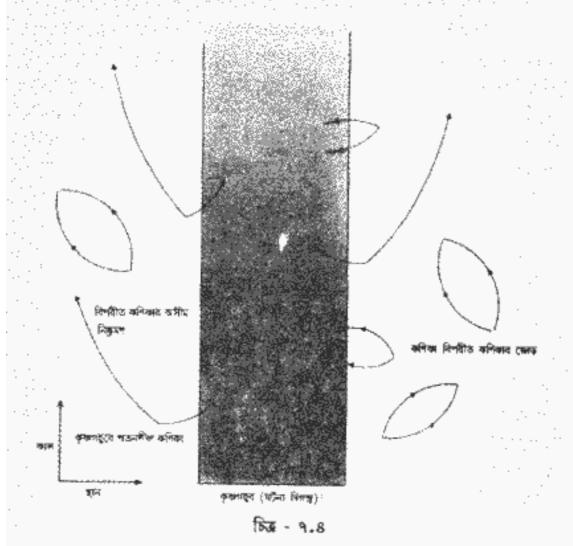
কৃষ্ণগহুরের আয়তনের হ্রাস প্রাপ্তি না হওয়া এনটুপি (entropy) নামক একটি ভৌতরাশিকে বিশেষভাবে মনে করিয়ে দেয়। এনট্রপি একটি তন্ত্রের (system) বিশৃঞ্চলার মাপ। সাধারণ অভিজ্ঞতায় দেখা যায় কোনো জিনিষকে নিজের উপর ছেড়ে দিলে তার ভিতরে বিশৃষ্কালা বৃদ্ধির প্রবণতা বাড়ে। (বাড়ীর মেরামত বন্ধ করে দিলেই সেটা বোঝা যায়) আমরা বিশৃত্বালা থেকে শৃত্বালা সৃষ্টি করতে পারি (উদাহরণ: বাড়ীটা রঙ করা যেতে পারে) কিন্ত এর জন্য প্রয়োজন চেষ্টা করা কিছা শক্তি বায় করা। ফলে প্রাপ্তবা সুশৃঙ্খল শক্তির পরিমাণ হ্রাস পায়।

এ চিন্তুনের যথায়থ বিবরণের নাম তাপগতিবিদাার ছিতীয় বিধি (second law of thermodynamics)। এই বিধি অনুসারে একটি বিচ্ছিন্নতন্ত্রের এনট্রপি সর্বনা বৃদ্ধি পায়। যখন দুটি তন্ত্র সংযুক্ত হয় তখন সংযুক্ত তন্ত্রের এনট্রপি একক দুটি তন্ত্রের এনট্রপির যোগফলের চাইতে কেনী। উদাহরণ: একটি বাজের ভিতরকার বায়বীয়পদার্থ-অণুতন্ত্রের (system of gas molecules) কথা বিচার করুন। অণুগুলিকে ছোট ছোট বিলিয়ার্ড বলের মতো ভাবা যেতে পারে। সেগুলির অবিচ্ছিন্নভাবে পরস্পরের সঙ্গে সংঘর্ষ হচ্ছে এবং বাব্দের দেওয়ালে ঠোক্কর খেছে তারা ফিরে আসছে। বায়বীয় পদার্থের তাপমাত্রা যত বাড়বে, অণুগুলিও তত দ্রুত চলমান হবে। বাব্ধের দেওয়ালের সঙ্গে সংঘর্ষও হবে কঠিনতর এবং তত বেশী ঘন धন আর দেওয়ালের উপর তাদের প্রদত্ত বহিমুখী চাপও বৃদ্ধি পাবে। অনুমান করা যাক শুরুতে সবকটা অণুই বাঞ্জের বাঁদিকে আবদ্ধ রয়েছে এবং সে দিকটা একটি পার্টিশন (partition-বিভাক্তক দেওয়াল) দিয়ে পৃথক করা। পার্টিশনটা সরিয়ে নিলে অণুগুলি ছড়িয়ে পড়তে চাইকে এবং বাস্ত্রের দৃটি অংশই দখল করে নেবে। কোনো এক পরবর্তী সময়ে আপতনের ফলে (by chance) সবকটি অণুই ডানদিকের অর্ধাংশে থাকতে পারে কিন্তা বাম দিকের অর্ধাংশে ফিরে যেতে পারে কিন্তু সর্বাধিক সম্ভাবনা দৃটি দিকেই মোটামুটি একই সংখ্যক অণু থাকবে। প্রাথমিক অবস্থায় যখন সমস্ত অণুই বাম দিকে ছিল তার তুলনায় এই ধরনের অবস্থায় শৃশ্বলা কম- অর্থাৎ বিশৃদ্ধলা বেশী। সূতরাং বলা হয় বায়বীয় পদার্থের এনট্রপি বেড়েছে। অনুরূপভাবে অনুমান করা যাক: শুরু করা হয়েছে দৃটি বান্ধ নিয়ে- একটিতে রয়েছে অক্সিজেন অণু, অন্যটিতে নাইট্রোজেন অণু। দুটি বাক্স জুড়ে যদি মাঝখানের দেওয়ালটি সরিয়ে নেওয়া যায় ভাহলে অক্সিজেন আর নাইট্রোজেন অণু মিশতে শুরু করবে। পরবর্তীকালে যে অবস্থার সম্ভাবনা সব চাইতে বেশী সেই অবস্থায় দুটি বাঙ্গের সর্বত্রই অক্সিজেন ও নাইট্রোজেন অণুগুলি প্রায় সমানভাবে মিশ্রিত থাকবে। এই অবস্থায় প্রথমাবস্থার দৃটি বাস্কের তুলনায় শৃঙ্খলা থাকবে। কম, সূতরাং এনট্রপি থাকবে বেশী।

ে নিউটনের মহাকষীয় বিধির মতো বিজ্ঞানের অন্যান্য বিধির তুলনায় তাপগতিবিদ্যার দ্বিতীয় বিধির স্থান একটু অনারকম। তাপগতিবিদ্যার দ্বিতীয় বিধি বিরাট সংখ্যাপ্তङ ক্ষেত্রে সত্য- কিন্তু সর্বক্ষেত্রে সত্য নয়। প্রথম বা**ন্ত**টির সমস্ত বায়বীয় পদার্থের অণু পরব**তীকালে** অর্থেক বাজে পাওয়ার সম্ভাবনা বহু কোটি বারের ভিতর একবার। তবে এরকম ঘটনা ঘটা সম্ভব। কিন্তু কাছাকাছি একটি কৃষ্ণগহুর থাকলে দ্বিতীয় বিধি অমান্য করার একটি সহজ্ঞতর পথ আছে বলে মনে হয়। বায়বীয় পদার্থের বাজে যেরকম ছিল সেইরকম প্রচুর এ**নট্রপিসম্পন্ন** খানিকটা পদার্থ কৃষ্ণগহুরে ফেলে দিন। কৃষ্ণগহুরের বাইরে অবস্থিত পদার্থের মোট এনট্রপি হ্রাস পাবে। তবুও অবশ্য বলা যেতে পাবে কৃষ্ণগহরের অভ্যস্তরের এনট্রপি সমেত মোট এনট্রপি হ্রাস পায়নি। কিন্তু কৃঞ্চগহুরের ভিতরটা দেখা আমাদের পক্ষে সম্ভব নয়, সেইজনা অভান্তরম্ব পদার্থে কতটা এনট্রপি আছে সেটা আমরা বুঝতে পারব না। খুব ভাল হত যদি কৃষ্ণগহুরের এমন কোনো অবয়ব থাকত যার সাহায্যে কৃষ্ণগহুরের বাইরের পর্যবেক্তক ক্ষাগহরের এনট্রপি বলতে পারত একং যখনই পদার্থ এনট্রপি বহন করে কৃষাগহরে পড়ত, ঐ অবয়বও তখন বাড়ত। যখনই কৃষ্ণগহুরের ভিতর পদার্থ পতিত হয় তখনই ঘটনা দিগ**ন্তের** ক্ষেত্রফল (area) বৃদ্ধি গায়--উপরে লিখিত এই আবিষ্কারের পর জেকব বেকেনস্টাইন (Jacob Bekenstein) নামে প্রিকটনের একজন গবেষণাকারী ছাত্র প্রস্তাবনা করেন, ঘটনা দিগস্তের ক্ষেত্রফল কৃষ্ণগহুরের এনট্রপির একটি মাপ। এনট্রপি বহনকারী পদার্থ যেমন থেমন কৃষ্ণগহুরে পতিত হয়, ঘটনা দিগন্তের ক্ষেত্রফলও তেমন বৃদ্ধি পায়। সূতরাং কৃষ্ণগহরের বাইরের পদার্থ এবং ঘটনাদিগন্তের ক্ষেত্রফলের যোগফল কখনোই হ্রাস পায় না।

কৃষ্যগহুর অভ কালো নয়

মনে হুয়েছিল এই প্রস্তাবনা (suggestion) অধিকাংশ পরিস্থিতিতেই তাপগতিবিদ্যার ছিতীয় বিধি লক্ত্যন করাকে বাধা দেবে। কিছু একটি মারাস্থাক দোষ থেকে গিয়েছিল। কৃষ্ণগছরের যদি এনট্রপি থাকে ভাহলে ভার উঞ্চতাও থাকা উচিত। কিছ যে কোনো বস্তু একটি বিশেষ তাপমাত্রায় একটি বিশেষ হারে বিকিরণ করবে। সাধারণ অভিজ্ঞতায় দেখা যায় আগুনে একটি লৌহণত গরম করলে লৌহণতটি লাল হয় এবং তা থেকে বিকিরণ নির্গত হতে থাকে। কিন্তু উঞ্চতা কম হলেও বস্তুপিশু থেকে বিকিরণ হয়। সাধারণ অবস্থায় সেটা ন**জরে পড়ে** না কারণ পরিমাণটা খুবই কম। দ্বিতীয় বিধি ভঙ্গ করা বন্ধ করার জনাই এই বিকিরণ প্রয়োজন। সূতরাং কৃঞ্জাহুর থেকে বিকিরণ নির্গত হওয়া উচিত কিন্তু সংজ্ঞা অনুসারে কৃঞ্জগত্তুরগুলি এমন বস্তু যা থেকে কোনো কিছু নিৰ্গত হওয়া সম্ভব নয়। সুতরাং মনে হয়েছিল একটি কৃষ্ণগহুরের ঘটনা দিগন্তের ক্ষেত্রেফলকে তার এনট্রপি বলে বিচার করা ঠিক নয়। ১৯৭২ সালে আমি, ব্রাণ্ডন কার্টার (Brandon Carter) এবং জিম্ বার্ডিন (Jim Bardeen) নামে একজন আমেরিকান সহক্ষীর সঙ্গে একটি প্রবন্ধ লিখি: সেই প্রবন্ধে আমরা দেখিয়েছিলাম এনট্রপি এবং ঘটনা দিগন্তের ক্ষেত্রফলের ভিতরে যথেষ্ট সাদৃশ্য থাকা সত্ত্বেও এই আপাতদৃষ্ট সর্বনাশা সন্ধট (fatal difficulty) রয়েছে। এ কথাটা আমার স্বীকার করা অবশাই উচিৎ ্রঃ এই প্রবন্ধ লেখার আংশিক কারণ ছিল বেকেনস্টাইন (Bekenstein) সম্পর্কে আমার বির্নাজ্য: আয়ার মনে হয়েছিল ঘটনা দিগন্তের ক্ষেত্রফল সম্পর্কে আমার আবিষ্কারের জিনি অপব্যবহার করেছেন। শেষ পর্যন্ত কিন্ত দেখা গোল তিনি ছিলেন মূলত সৃষ্টিক তবে সৃষ্টিক নি ি । ি । ি । ি । । এখনভাবে যা তিনি নিশ্চরাই আশা করেন নি ।


১৯৭৩ সালের সেপ্টেম্বর মাসে আমি মস্কো পরিদর্শনে যাই। সেই সময় আমি ইয়াকত ক্ষেণ্ডোভিচ্ (Yakov Zeldovich) এবং আলেকজান্তার স্টারোবিনৃত্তি (Alexander Starobinsky) নামে দুই প্রধান সোভিয়েট বিশেষজ্ঞের সঙ্গে কৃষ্ণগহুর সম্পর্কে আলোচনা করি। তাঁরা আমাকে বোঝালেন কোয়ান্টাম বলবিদ্যার অনিশ্চয়তার নীতি অনুসারে ঘূর্ণায়মান কৃষ্ণগহরগুলি কণিকা সৃষ্টি করবে এবং বিকিরণ করবে। তাঁদের ভৌত যুক্তিভিত্তিক মত আমি মেনে নিয়েছিলাম কিছ তাদের বিকিরণ গণনার গাণিতিক পদ্ধতি আমার পছন্দ হয়নি। সূতরাং আমি একটি উন্নততর গাণিতিক শদ্ধতি আবিজ্ঞারের চেষ্ট্রা শুরু করলাম। ১৯৭৩ সালের নভেদ্বর মাসে অন্ধ্রার্ডে একটি বেসরকারী সেমিনারে (শিক্ষাকেন্দ্রে আলোচনা সভা- seminar) আমি সেই পদ্ধতির বিবরণ দান করি। সে সময় কতটা বিকিরণ হবে সেটা আমি গণনা করে নির্ধারণ করিনি। আয়ার আশা ছিল জেল্ডোভিচ্ এবং স্টারোবিন্স্কির পূর্বাভাস অনুসারে ঘূর্ণায়মান কৃষ্ণগহুর পেকে যে বিকিরণ হয় শুধুমাত্র সেটাই আবিষ্কার করা। কিন্তু গণনার পর আমি বিরক্তি আর বিশ্ময়ের সঙ্গে দেখলাম এমনকি অঘূর্ণায়মান কৃষ্ণগহুরগুলিও আগাতনৃষ্টিতে কণিকা সৃষ্টি করতে পারে এবং স্থির হারে বিকিরণ করতে পারে। প্রথমে আমি ভেবেছিলাম এই বিকিরণের নির্দেশ হল আমার ব্যবহাত একটি আসলতা (approximation) সিদ্ধ নয় (not valid) । আমার ভয় ছিল বৈকেনস্টাইন ব্যাপারটা জ্ঞানলে এটাকেই কৃষ্ণগহরের এনট্রনি সম্পর্কে তাঁর নিজস্ব চিন্তাধারার সপক্ষে যুক্তি হিসাবে বাবহার করবেন, এ ব্যাপারটি আমার তথনও পছল ছিল না। কিন্তু আমি যতই তেবেছি ততই আমার মনে হয়েছে আসরতাগুলি প্রকৃতই সিদ্ধ হওয়া উচিত (ought to hold) ৷ নির্গত কণিকাগুলির বর্ণালী একটি উত্তপ্ত বস্তুপিশ্রের যে বর্ণালী হওয়া উচিত তার সঙ্গে অভিন্ন এবং কৃষ্ণগহুব খেকে কণিকা নির্ণমনের হার এমন যে শে হার নির্ভূপভাবে ছিতীয় বিধি ভঙ্গ হওয়া প্রতিরোধ করে। নির্গমন যে বাগুর সে সম্পর্কে উপরোক্ত তথ্যগুলিই শেষ গর্যন্ত আমার বিশ্বাস উৎপাদন করে। ভারপর খেকে অন্য অনেকে নানাভাবে এই গণনার পুনকৃতি (repeated) করেছেন। উঞ্চতা (temperature) যুক্ত একটি উত্তপ্ত বস্তুপিত্তেরই মত্যে কৃষ্ণগহুর থেকে কণিকা নির্গত হওয়া উচিৎ এবং সেটা থেকে বিকিরণও হওয়া উচিৎ। এই তাশমাত্রা (temperature) নির্ভব করবে শুধুমাত্র কৃষ্ণগছরটির ভরের উপর : ভর যত বেশী হবে তাপমাত্রা হবে তত কম। উপরে উল্লিখিত প্রতিটি গণনাতেই এই তথ্য সমর্থিত হয়েছে।

আমরা জানি কৃষ্ণগহুরের ঘটনা দিগন্ত খেকে কোনো কিছুই নির্গত হতে পারে না, তাহলে কৃষ্ণগহুর থেকে কণিকা নির্গত হওয়া কি করে সন্তব ? উত্তরটি দিছে কোয়ান্টাম তন্ত্ব: কণিকাগুলি কৃষ্ণগহুরের ভিতর থেকে আসে না, আসে কৃষ্ণগহুরের ঘটনা দিগন্তের কিব বাইরে "শূন্য" (empty) স্থান থেকে। এটা আমরা বৃষ্ণতে পারি নিম্ননিম্বিত উপায়ে: আমরা যাকে শূন্য স্থান বলে ভাবি সেটা সম্পূর্ণ গূন্য হতে পারে না, কারণ তা যদি স্থা ভাহলে মহাক্ষীয় ক্ষেত্রে, বিদ্যুৎ-চৃষ্ণকীয় ক্ষেত্রের মতো সমস্ত ক্ষেত্রেকেই নির্ভাভাবে শূন্য

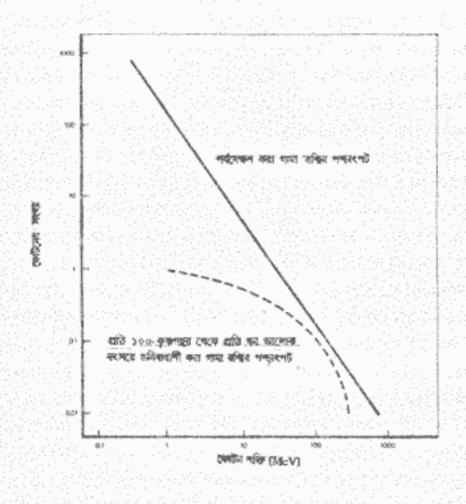
ছুতে হবে। কিন্ত একটি ক্লেত্রের মান (value) এবং কালের সঙ্গে ভার পরিবর্তনের হার প্রায় একটি কৃণিকার অবস্থান এবং গতিবেগের মতো: অনিশ্চয়তার নীতির (uncertainty principle) নিহিতার্থ অনুসারে এই সমস্ত রাশিগুলির একটিকে যত নির্থৃতভাবে জানা যায় অপরটি সম্পর্কে জ্ঞান ততই কম নির্ভূত হয়। সূতরাং শূনাস্থানে ক্ষেত্রকে ঠিক নির্ভূতভাবে শূন্য বলে স্থির করা যায় না। কারণ, তাহলে এর একটি নিখুঁত মান (শৃনা) এবং পরিবর্তনের নিখুঁত হার (এ ক্ষেত্রেও শূনা) এই দৃটিই থেকে যাবে। ক্ষেত্রের (field) মানের (value) একটি সর্বনিম্ন গরিমাণ অনিশ্চরতা অর্থাৎ কোয়ান্টাম হ্রাসবৃদ্ধি (quantum fluctuation) থাকতেই হবে। এই হ্রাসবৃদ্ধিকে মহাকর্ষ কণিকা কিম্বা আলোক কণিকার জ্যোড় হিসাবে ভাবা যেতে পারে-এরা কোনো সময়ে একসঙ্গে দেখা দেয়া, আলাদা হয়ে যায়, আবার একত্র হয় এবং পরস্পরকে বিনাল করে। সূর্যের মহাক্ষীয় বল যারা বহন করে এগুলিও সেগুলির মতো কল্লিড (virtual) কণিকা। বাস্তব কণিকাগুলিকৈ যেরকম কণিকা অভিজ্ঞাপক যন্ত্র (particle detector) দিয়ে প্রত্যক্ষভাবে পর্যবেক্ষণ করা যায়, এগুলিকে সেরকম পর্যবেক্ষণ করা যায় না। পরমাণুর ভিতরকার ইলেক্টনের কক্ষের পরিবর্তনে শক্তির যে সামান্য পরিবর্তন হয় তাই দিয়ে কিন্তু এগুলির পরোক্ষ ক্রিয়া মাপা বায় এবং এর সঙ্গে তাত্ত্বিক ভবিষ্যদ্বাণীর উল্লেখযোগ্য পরিমাণে মিল রয়েছে। অনিশ্চয়তার নীতির আর একটি ভবিষ্যত্বাণী হল: পদার্থ কণিকার সমরূপ কথ্নিত (virtual pair) জোড় আরো দেখা যাবে, যেমন ইলেক্ট্রন কিন্তা কার্কের (quark) জ্বোড়। এক্ষেত্রে কিন্তু জ্বোড়ের একটি হবে কণিকা এবং অপরটি হবে বিপরীত কণিকা (আলোক এবং মহাকর্ষের বিপরীত কণিকা এবং কণিকা অভিন্ন)।

যেহেতু শূন্যতা থেকে শক্তি সৃষ্টি হতে পারে না সেইজন্য কণিকা/বিপরীত কণিকার জোড়ের একটি অংশীদারের থাকবে পরা (positive) শক্তি এবং অপর অংশীদারের থাকবে অপরা (negative) শক্তি। অপরা শক্তিসম্পন্ন কণিকা অভিশপ্ত স্বল্লাযু কল্লিত কণিকা, কারণ বাস্তব কণিকাগুলি স্থাভাবিক অবস্থায় সব সময় পরা শক্তিসম্পন্ন হয়। একে সেইজন্য অবশ্যই নিজের অংশীলার খুঁজে বার করে তার সঙ্গে বিনষ্ট হতে হবে। তবে বৃহৎ ভরসম্পান একটি বস্তুপিতের নিকটবতী কণিকার শক্তি সেই বস্তুপিও থেকে দূরবর্তী অবস্থার তুলনার কম হবে। ভার কারণ, বস্তুপিশুটির মহাক্ষীয় আকর্ষণ থেকে কণিকাটিকে দূরে নিয়ে যেতে শক্তি তখনো প্রয়োজন হবে। খ্যাভাবিক অবস্থায় কণিকার শক্তি হবে পরা (positive) , কিন্তু একটি কৃষ্ণগহরের ভিতরকার মহাক্ষীয় ক্ষেত্র এত বেশী গক্তিশালী যে, সেখানে বাস্তব কণিকাগুলিরও অপরা শক্তি (negative) থাকতে পাবে। কৃষ্ণগহুরের অন্তিত্ব থাকলে অপরা শক্তিসম্পন্ন কল্পিড ক্রণিকার ক্রঞ্গানুত্রে গতিত নুয়ে খান্তব ক্রণিকা কিন্তা বিপরীত ক্রণিকায় পরিণত হওয়া সম্ভব। এক্ষেত্রে তাকে আর অংশীদারের সঙ্গে বিনষ্ট হতে হবে না। এর পরিত্যক্ত অংশীদারও কৃষ্ণগহরে পতিত হতে পারে। কিস্তা পরশেক্তি থাকার ফলে বাস্তব কণিকা কিস্তা বিপরীত কণিকারূপে কৃষ্ণগহুরের নিকট থেকে অপসরণও করতে পারে (চিক্র-৭.৪)। দুরস্থিত একজন পর্যবেককের ঘনে হবে এগুলি কৃষ্ণগহর থেকে নির্গত হয়েছে। কৃষ্ণগহরটি যত ছোট হবে, অপরা শক্তিসম্পন্ন একটি কণিকার বাস্তব কণিকায় রূপান্তরিত হওয়ার আগে তত কম দুরত্ব অতিক্রম করতে

banglalmemet

হবে। সুতরাং নির্গত হওয়ার হারও তত কেশী হবে এবং কৃষ্ণগহরের আশাতনৃষ্ট তাশমক্রোও তত কেশী হবে।

বহিগমি বিকিরণের পরা শক্তির সঙ্গে সমতা রক্ষা করবে কৃষ্ণগহুরের অপরা শক্তিসম্পন্ন কণিকাগুলির শ্রোত। আইনস্টাইনের সমীকরণ $E = mc^2$ অনুসারে (E-শক্তি, m-তর এক্ c আলোকের দ্রুতি) শক্তি ভরের আনুপাতিক (proportional), সূতরাং কৃষ্ণগহুরের অন্তর্গামী অপরা শক্তির প্রোত তার ভর কমিয়ে দেবে। কৃষ্ণগহুরের ভর কমলে তার ঘটনা দিগন্তের শেনাম্পন্ত (area) ক্ষুত্রতর হয়। কিষ্ক কৃষ্ণগহুরের এনট্রশির এই হ্রাসপ্রাপ্তির ক্ষতিপূরণ হতে পারে নিগতি বিকিরণের এনট্রশি দ্বারা, এমন কি, তার চাইতেও ধেশী হতে পারে। সূতরাং দিন্ডীয় বিধি কখনো লঙ্কিত হয় না।


তাছাড়া কৃষ্ণগহরের ভর যত কম হয় তার তাপমাদ্রা তত বেশী হয়। সূতরাং কৃষ্ণগহরের ভর হাস পেলে তার তাপমাদ্রা বৃদ্ধি পাবে, বৃদ্ধি পাবে সেটা থেকে নির্গত হওয়ার (emission) হার—অতএব তার ভর আরও দ্রুত হ্রাস পাবে। কৃষ্ণগহরের ভর যখন শেন পর্যন্ত অত্যন্ত ক্ষা হয়ে যায় তখন ব্যাপরেটা কি নাঁড়ায় সেটা খুব স্পষ্ট নয়। কিন্তু সবচাইতে যুক্তিসঙ্গত অনুমান হল: অন্তিমে নিগত হওয়ার এক বিরাট বিস্ফোরণের ফলে কৃষ্ণগধুরটি সম্পূর্ণ মিলিছে যাবে। এই বিস্ফোরণটি হতে পারে বহু মিলিয়ান হাইড্রোজেন বোমার সমান।

সূর্য থেকে কয়েকগুণ বেশী ভরসম্পন্ন একটি কৃষ্ণগহরের ভাপমাত্রা হবে চরম শূনা (absolute zero) থেকে এক ডিগ্রীর এক কোটি ভাগের এক ভাগ বেশী। যে মাইক্রোভয়েভ বিকিরণ (microwave radiation) সমগ্র মহাবিশ্বে ব্যাপ্ত তার তাপমাত্রা (চরম শূন্য খেকে প্রায় ২.৭ ডিগ্রী বেশী) থেকে এই তাপমাত্রা অনেক কম। সূতরাং এই সমস্ত কৃঞ্চগহুর যা বিশোষণ করে ভার তুলনায় তা ঘেকে নির্গত হবে (emit) অনেক কয়। অনস্তকাল ধরে সম্প্রসারিত হওয়াই যদি মহাবিশ্বের নিয়তি হয় তাহলে এক সময় মাইক্রোওয়েভ বিকিরণের তাপমাত্রা এই ধরনের কৃষ্ণগহরের তাপমাত্রার চাইতে কমে যাবে। সূতরাং কৃষ্ণগহরটি ক্রমশ ভর শরিত্যাগ করতে থাকবে। কিম্ব ভবুও এর তাপমাত্রা এত কম হবে যে কৃঞ্চগহুরটি উবে যেতে প্রায় মিলিয়ান (একের পিঠে ছেষট্রিটি শূনা) বংসর লাগবে। এই কাল মহাবিশ্বের বয়সের চাইতে অনেক বেশী। মহাবিশ্বের বয়স মাত্র দশ থেকে কুড়ি হাজার মিলিয়ান বংসর (এক কিশ্বা দৃ-এর পিঠে দশটা শৃনা)। এদিকে আবার একাধিক আদিম কৃষ্ণগহুর থাকতে পারে। সেগুলির ভরও হতে পারে অনেক কম। এগুলি উৎপন্ন হওয়ার কারণ ছিল মহাবিদ্বের অতি আদিম অবস্থায় যে সমস্ত অংশের সুষম বিকাশের সঙ্গে অসঙ্গতি ছিল, সেগুলির চুল্সে যাওয়া। ষষ্ঠ পরিচ্ছেদে এ তথ্য উল্লেখ করা হয়েছে। এই রকম কৃষ্ণগহুরের তাপমাত্রা অনেক বেশী হবে আর সেগুলি থেকে বিকিরণ নির্গত হওয়ার হারও হবে অনেক বেশী। আদিম একটি কৃষ্ণগহরের (primordial black hole) শুরুতে যদি ভর থাকে একল কোটি টন তাহলে তার আয়ু হবে মোটামূটি আমাদের মহাবিশ্বের আয়ুর সমান। যে সমস্ত আদিম কৃঞ্চগহুরের প্রাথমিক ভর এর চাইতে কম ছিল সেগুলি ইতিপূর্বে সম্পূর্ণ উবে গিয়েছে (completely evaporated) , কিন্তু যেশুলির ভর এর চাইতে সামান্য কেন্ট্রী ছিল সেগুলি থেকে এখনো এঞ্ছ-ধ্র এবং গামা-রে (X-Ray & Gamma Ray) ক্রপে বিকিরণ নিগত হচেছ। এই এন্ধ-রে এবং গামা-রে গুলি আলোক তরঙ্গের মতো কিন্তু সেগুলির তরঙ্গদৈর্ঘা অনেক কম। এই গহরশুনির কৃষ্ণ বিশেষণের বিশেষ কোনো অর্থ নেই। এগুনি আসলে উত্তপ্ত হয়ে শ্বেডবর্ণ ধারণ করে এবং এগুলি থেকে দশ হাজার মেগাওয়াট হাঙ্গে শক্তি নির্গত হয়।

এইরকম একটি কৃষ্ণগহর দশটি বৃহৎ বিদৃৎ উৎপাদন কেন্দ্র চালাতে পারে—অবশা যদি তার শক্তিকে এই কাজে ব্যবহার করা সপ্তব হয়। ব্যাপারটা একটু শক্ত হবে—পর্বতপ্রমাণ একটি কৃষ্ণগহর সঙ্কৃতিত (compressed) হয়ে এক ইঞ্জির এক মিলিয়ান ভাগের এক মিলিয়ান ভাগে হয়ে যাবে অর্থাৎ তার আকার হবে একটি পরমাণুর কেন্দ্রকের সমান! এরকম একটি কেন্দ্রক যদি ভৃপ্ষে থাকে তাহলে সেটা পৃষ্ঠ ভেদ করে পৃথিবীর কেন্দ্রে পৌছে যাবে। তাকে বাধা দেওয়ার কোনো উপায় থাকবে না। এটা পৃথিবীর ভিতর দিয়ে দোলকের মতো যাতায়াত করতে থাকবে এবং শেষ পর্যন্ত পৃথিবীর কেন্দ্রে গিয়ে স্থিতিলাভ করবে। সূতরাং এ থেকে নির্গত শক্তি বাবহার করা যাবে, একে স্থাপন করার সেরকম স্থান হতে পারে শুধু এটাকে পৃথিবীকে প্রদক্ষিণ করছে এরকম কোনো কক্ষপথে স্থাপন করলে। এটাকে পৃথিবীকে প্রদক্ষিণ

করার মতো কক্ষপথে স্থাপন করার একমাত্র উপায় একটি বিরাট ভরসম্পন্ন বস্তুপিশুক্তে টেনো এনে এর সামনে স্থাপন করা। ব্যাপারটা অনেকটা গাধার সামনে গান্ধর রাখার মতো। প্রস্তাবটা খুব বাস্তব বলে মনে হয় না অন্তভ নিকট ভবিষ্যতে তো নিশ্চয়ই নয়।

কিন্তু যদি এই আদিম কৃষ্ণগহুরগুলি থেকে নির্গত শক্তিকে বাধহার করা সম্ভব নাও হয় তাহলে এগুলি পর্যবেক্ষণ করার সম্ভাবনা কতটা ? এই আদিম কৃষ্ণগহুরগুলি থেকে তাদের জীবনকালের অধিকাংশ সময় যে গামা রশ্মি নির্গত হয় আমরা সেই রশ্মি খুজঁতে পারি। এই কৃষ্ণগহুরগুলি বহুদূরে অবস্থিত, সুতরাং অধিকাংশ কৃষ্ণগহুর থেকে বিকিরণ হবে অভাস্ত

किंब- १.८

দুর্বল। কিন্তু সবগুলি একত্র হলে হয়তো সনাক্ত করাও যেতে পারে। গামা রশ্মির এরকম একটি পশ্চাংগট আমরা সতিইে দেখতে পাই। চিত্র— ৭.৫ থেকে দেখা যায় পর্যবেক্ষণ করা জীব্রতার বিভিন্ন স্পদাক্তে (frequency-প্রক্তি সেকেণ্ডে তরক্ষের সংখ্যা) কি রকম পার্থকা হয়। কিন্ত এই পশ্চাংগট আদিয় কৃষ্ণগহর ছাড়া জন্য কোনোভাবেও সৃষ্টি হয়ে থাকতে পারে—হয়তো হয়েছেও তাই। চিত্র—৭.৫-এ বিন্দুরেখা দিয়ে দেখানো হয়েছে, যদি প্রক্তি ঘন আলোকবংসারে (cubic light year) গড়ে তিন্স থাকে তাহলে কিভাবে আদিয় কৃষ্ণগহর থেকে নির্গত গামা রশ্মির স্পনান্ত অনুসারে তীব্রভা পরিবর্তিত হয়। সূতরাং বলা যেতে পারে

শামারশ্মির পশ্চাৎপট পর্যবেক্ষণ করে কৃষ্ণগহরের সপক্ষে কোনো ইতিবাচক সাক্ষা (positive evidence) পাওয়া য়য় না। কিছ তা থেকে এ সংবাদ আমরা পাই যে মহাবিশ্বের প্রতি খন আলোকবৎসরে এর সংখ্যা গড়ে তিনশ'-এর বেশী হতে পারে না। এই সীমার অর্থ হল: আদিম কৃষ্ণগহরের তর মহাবিশ্বের মোট পদার্থের দশ লক্ষ ভাগের এক ভাগের বেশী হবে না।

আদিয় কৃষ্ণগহুরগুলি এত বিরল হওয়ার ফলে মনে হতে পারে— আমরা গামা রশ্মির একক উৎস হিসাবে পর্যবেক্ষণ করতে গারি— আমাদের এত নিকটে কোনো কৃষ্ণগহুর পাওয়ার সম্ভাবনা কম। কিন্তু মহাকর্ম কৃষ্ণগহুরগুলিকে যে কোনো পদার্থের দিকে আ<mark>কর্ষণ করবে</mark>, সূতরাং নীহারিকার ভিতরে এবং তার কাছাকাছি কৃষ্ণগহুরগুলির অনেক বেশী সংখ্যায় থাকা উচিং। যদিও গামা রশ্মির শশ্চাংগট খেকে আমরা জানতে পারি প্রতি ঘন আলোকবর্ষে গড়ে তিনশ'র বেশী কৃষ্ণগহুর থাকতে পারে না তবুও আমাদের নিজেদের নীহারিকায় এগুলির সংখ্যা কি রকম হতে পারে সে সম্পর্কে আমরা কিছুই জানতে পারি না। তাদের সংখ্যা যদি এর চাইতে দশ লক্ষ গুণ বেশী হোত তাহলে আমাদের নিকটতম কক্ষগহুর হয়তো প্রায় একশ' কোটি কিলোমিটার দূরে অবস্থিত হোত-- অর্থাৎ আমাদের জানা দুরতম গ্রহ প্লুটোর কাছাকাছি হোত। এই দূরত্বে থাকলেও একটি কৃষ্ণগহুর খেকে অবিচ্ছিন্ন বিকিন্তুণ সনাক্ত করা কঠিন হোত— এমনকি সেই বিকিরণ দশ হান্তার মেগাওয়াট **হলেও। একটি** আদিম কৃঞ্চগহুর পর্যবেক্ষণ করতে হলে একটি যুক্তিসঙ্গত সময়ের ভিতরে (ধরা যাক এক সপ্তাহ) একই অভিমূখ থেকে আগমনশীস কয়েকটি গামা রশ্মির কোয়ান্টা সনাক্ত করতে হবে। তা না হলে সেগুলি শুধুমাত্র পশ্চাৎপটের অংশমাত্র হতে পারে। কিন্তু প্লাঙ্কের (Planck) কোয়ান্টাম নীতি আমাদের বলছে প্রতিটি গামা রশ্মির কোয়ান্টাম অতিশয় উচ্চশক্তিসম্পন্ন তার কারণ গামা রশ্মিগুলির স্পদাঙ্ক খুবই বেশী। সুতরাং এমনকি দশহান্তার মেগাওয়াট বিকিরণ করতেও খুব বেশী কোয়ান্টা প্রয়োজন হবে না। প্রটোর দূবত্ব থেকে আগমনশীল কয়েকটি কোয়াটা পর্যবেক্ষণ করতে এত বড় গামা রশ্মি অভিজ্ঞাপক যন্ত্র (detector) দরকার যা এখনও তৈরী হয়নি। তাহাড়া যন্ত্রটিকে থাকতে হবে স্থানে (space), কারণ গামা রশ্মি আবহমগুল (atmosphere) ভেদ করতে পারে না।

অবশা প্রটোর দূরত্বের মতো নিকটবতী একটি কৃষ্ণগহুর যদি তার জীবনকালের শেষ
প্রান্তে এসে বিশ্বেগরিত হয় তাহলে তার অন্তিম বিকিরণ সনাক্ত করা সহজ হবে। কিছ্
কৃষ্ণগহুরটি যদি গত এক হাজার কিয়া দু'হাজার কোটি বছর বিকিরণ করে বাকে তাহলে
তার অন্তিম সময় কয়েক মিলিয়ান বছর আগে পরে না হয়ে আগামী কয়েক বছরের ভিতর
হওয়ার সম্ভাবনা একটু কম! সূত্রাং আপনার গবেষণার জন্য বরান্দ টাকা ফুরিয়ে যাওয়ার
আগে এরকম একটি বিশেগরণ দেখবার একটি যুক্তিপূর্ণ সম্ভাবনা চাইলে প্রায় এক আলোকবর্ষ
দূরত্বের ভিতরে যে কোনো বিশেগরণ সনাক্ত করার উপায় বার করতে হবে। তারপরেও
আপনার সমস্যা থাকবে: বিশেগরণ থেকে নিগত কয়েকটি গামা রন্মি কোয়ান্টা ধরা পড়বার
মতো একটি বৃহৎ গামা রন্মি অভিজ্ঞাপক যন্ত্র। তবে এক্ষেত্রে সবকটি কোয়ান্টা যে একই
অভিমুখ থেকে আগতে সেটা নির্ধারণ করার প্রয়োজন হবে না। সবকটি কোয়ান্টা অতি অল্পকালের

ব্যবধানে পৌঁছেছে— এটা পর্যবেক্ষণ করতে পারলেই মোটামৃটি নিশ্চিত হওল্পীয়ারিব য়ৈ জন্ম নি ি। সবকটি একই বিস্ফোরণ থেকে এসেছে।

আদিম কৃষ্ণগহরের নির্দেশ দিতে পারে এরকম একটি অভিজ্ঞাপক যন্ত্র (detector) হল পৃথিবীর সম্পূর্ণ আবহমণ্ডল (যাই হোক না কেন, এর চাইতে বড় অভিজ্ঞাপক যন্ত্র নির্মাণের সম্ভাবনা আমাদের খুবই কম)। একটি উচ্চশক্তি সম্পন্ন গামা রশ্মি কোয়ান্টাম একটি পরমাণুকে আঘাত করলে সেটা ভেঙে জোড়ায় জোড়ায় ইলেক্ট্রন আর পঞ্জিট্রন (বিপরীত ইলেক্ট্রন) সৃষ্টি করে। এগুলি পরমাণুকে আঘাত করলে সেগুলিও আবার ইলেক্ট্রন পজিট্রনের জোড়া সৃষ্টি করে। সুতরাং পাওয়া যায় একটি ইলেক্ট্রন বর্ষণ। এর ফলে এক রকম আলোক সৃষ্টি হয় যার নাম চেরেনকভ (Cerenkov) বিকিরণ। সূতরাং রাতের আকাশে আলোর ঝলক দেখে গামা রশ্মি বিস্ফোরণের নির্দেশ পাওয়া যায়। অবল্য অন্য কয়েকটি পরিঘটনা থেকেও আকালে আলোর ঝলক দেখা যেতে পারে। যেমন, বিদ্যুৎ চমকানো, পড়স্ত (tumbling) কৃত্রিম উপগ্রহে প্রতিফলিত সূর্যালোক এবং কক্ষপথে প্রদক্ষিণরত কৃত্রিম উপগ্রহের ধ্বংসাবশেষ। যথেষ্ট দুরস্থিত দুটি স্থানে দুই কিয়া ততোধিক আলোর ঝলক যুগপৎ পর্যবেক্ষণ করে গামা রশ্মির বিশেষরণ এবং উপরে উল্লিখিত অভিক্রিয়াগুলির (effects) ভিতর পার্থকা বোঝা সম্ভব ৷ নীল পোর্টার (Neil Porter) এবং ট্রেভর উইকৃস (Trevor Weekes) নামে ভাবলিনের দৃষ্ট বৈজ্ঞানিক অ্যারিজোনাতে (Arizona) টেলিস্কোপের সাহাযো এই ধরনের অনুসন্ধান করেছিলেন। তাঁরা অনেকগুলি আলোর ঝলক দেখতে পেয়েছিলেন কিন্তু কোনোটিকে আদিম কৃষ্ণগহর থেকে নির্গত গামা রশ্মি বিস্ফোরণের ফলে হয়েছে বলে নিশ্চিত সিদ্ধান্ত করতে পারেন নি।

আদিম কৃষ্ণগহুর অনুসন্ধানের চেষ্টা হয়তো বিফল হবে বলে মনে হয় কিছু তাহলেও এই প্রচেষ্টার ফলে মহাবিশ্বের আদিম অবস্থা সম্পর্কে গুরুত্বপূর্ণ সংবাদ আমরা পাব। আদিম অবস্থায় মহাবিশ্ব যদি বিশৃত্বলে কিন্তা নিয়মহীন থাকত কিন্তা যদি পদার্থের চাপ পুর কম থাকত তাহলে গামা রশ্মির পশ্চাৎপট সম্পর্কে আমাদের পর্যবেক্ষণ থেকে আদিম কৃষ্ণগহুরের সংখ্যার যে সীমা আগে নির্ধারণ করা হয়েছে তার চাইতে অনেক বেশী সংখ্যক আদিম কৃষ্ণগহুর উৎপাদন আশা করা যেত। শুধুমাত্র আদিম মহাবিশ্ব যদি মস্থ ও সমরাপ হোত এবং যদি তার উদ্ভেচাপ থাকত, একমাত্র তাহলেই পর্যবেক্ষণযোগ্য কৃষ্ণগহুরের অভাব ব্যাখ্যা করা সম্ভব।

কৃষ্ণগহর থেকে বিকিরণ বিষয়ক চিন্তাধারা মূলগতভাবে এ শতাব্দীর দূটি মহান তন্ত্ব-ব্যাপক অপেক্ষবাদ (general relativity) এবং কণাবাদী বলবিদ্যার (quantum mechanics) উপর নির্ভরশীল ভবিষাদ্বাণীর প্রথম উদাহরণ। তদানীন্তন প্রচলিত দৃষ্টিভঙ্গির বিপরিত হওয়ার জনা শুরুতে এই মতবাদ প্রচুর বিরুদ্ধতা সৃষ্টি করে। "কৃষ্ণগহুর থেকে কিছু নির্গত হওয়া কি করে সন্তব ?" অল্পফোর্ডের কাছে রাদারফোর্ড অ্যাপলটন (Rutherford Appleton) ল্যাবরেটরীতে একটি কনফারেলে যখন আমি প্রথম আমার গণনার ফল ঘোষণা করেছিলাম তখন সাধারণভাবে সবাই আমাকে অবিশ্বাস করেছে। আমার বক্তৃতার পর ঐ অধিবেশনের চেয়ারম্যান লগুনের কিংস কলেজের জন জি, টেলর (John G. Taylor) দাবী করলেন পুরো ব্যাপারটাই অর্থহীন। এই মতের ভিত্তিতে তিনি একটি প্রবন্ধও লিখেছিলেন।
লের পর্যন্ত জন টেলর সম্বেত অধিকাংশ লোকই এই সিদ্ধান্তে এসেছিলেন যে, ব্যাপক অপেক্ষবাদ
এবং কণাবাদী করবিদ্যা সম্পর্কিত অন্যান্য ধারণা যদি সঠিক হয় তাহলে অন্যান্য উত্তপ্ত বস্তুপিশুের
মতো কৃষ্ণগহরকেও বিকিরণ করতেই হবে। সূতরাং আমরা যদিও একটিও আদিম কৃষ্ণগহর
খুঁজে পাইনি, তবুও কৃষ্ণগহর খুঁজে পেলে তা থেকে যে প্রচুর পরিমাণ গামা রশ্মি এবং
এজ-রে নির্গত হতে দেখা যাবে সে বিষয়ে সাধারণ মতৈকা রয়েছে।

মনে হয়, কৃষ্ণগহুর থেকে বিকিরণের অস্তিছের অস্তানিহিত অর্থ হল মহাকর্ষের ফলে চুল্সে যাওয়াই কৃষ্ণগহুরের চরম এবং অপরিবর্তনীয় পরিণতি নয়। কিন্তু আগে ঐ রকম চিন্তাধারাই ছিল। কোনো মহাকালচারী যদি কৃষ্ণগহুরে পতিত হন তাহলে কৃষ্ণগহুরটির ভর বৃদ্ধি পাবে কিন্তু ঐ বাড়তি ভরের তুলা মানের শক্তি বিকিরণ রূপে মহাবিধে ফিরে আসবে। সূত্রাং এক অর্থে মহাকালচারীটি চক্রাকারে আবার ফিরে আসবে (recycle); কিন্তু এই অমরত্ব হবে একটু মন্দ ধরনের। কারণ, মহাকালচারীটি কৃষ্ণগহুরের ভিতর ছিড়ে টুকরো টুকরো হয়ে যাওয়ার সময় তার ব্যক্তিগত কালবোধ যে লোপ পাবে সেটা প্রায় নিশ্চিত। এমন কি, শেষ পর্যন্ত যে ধরনের কণা কৃষ্ণগহুর থেকে নির্গত হবে সেগুলিও মহাকাশচারী যে কণাগুলি দিয়ে গঠিত হয়েছিল সাধারণত তার চাইতে পৃথক হবে। একমাত্র যা বেঁচে থাকবে সেটি হল মহাকাশচারীটির ভর বা শক্তি।

যতক্ষণ পর্যস্ত কৃষ্ণগহরটির ভর এক গ্রামের ভগ্নাংশের চাইতে বেশী থাকবে ততক্ষণ পর্যন্ত কৃষ্ণগহুর থেকে বিকিরণ (emission) নির্ণয় করার স্থন্য যে আসন্নতাগুলি (approximations) আমি ব্যবহার করেছি সেগুলি ভালই কার্যকর হবে। কিম্ব কৃষ্ণগহুরের জীবনকালের শেষে যখন তার তর অতিক্রদ্র হয়ে যাবে তখন এই আসরতাগুলি তেঙে পড়বে। সবচাইতে সম্ভাবা ভবিষাৎ মনে হয়: কৃষ্ণগহুরটি অদৃশ্য হয়ে যাবে- অস্ততপক্ষে মহাকাশের আমাদের অঞ্চল থেকে। তার সঙ্গে নিয়ে যাবে ওই মহাকাশচরিটিকে এবং সতিটে যদি আর কোনো অননাতা (singularity) তার ভিতরে খেকে থাকে তাহলে সেটিকেও। ব্যাপক অপেক্ষবাদ যে অননাতাগুলি সম্পর্কে ভবিষ্যদ্বাদী করেছিল কণাবাদী বলবিদ্যা যে সেগুলিকে দূর করতে পারে এটাই ছিল তার প্রথম ইন্সিত। কিন্তু ১৯৭৪ সালে আমি এবং অন্যান্য অনেকে যে পদ্ধতি ব্যবহার স্বর্মাছিলাম, তা খেকে কণাবাদী মহাকর্ষে অনন্যতাগুলি দেখা দেবে কি না-- এই জাতীয় প্রশ্নের উত্তর মেলে না। সূতরাং ১৯৭৫ সালের পর থেকে আমি রিচার্ড ফেনম্যানের (Richard Feynman) ইতিহাসের যোগফলের (sum of histories) চিন্তাধারার ভিত্তিতে আরো জোরের সঙ্গে কণাবাদী মহাকর্ষের সমীপবতী হতে শুরু করেছি। এই পদ্ধতিতে মহাবিশ্ব এবং মহাকাশচারীর মতো তার আধেয়র (contents) উৎপত্তি এবং পরিণতি সম্পর্কে যে ইঙ্গিত পাওয়া যায় তার বিবরণ দেওয়া হবে পরবর্তী দুই অধ্যায়ে। আমরা দেখব যদিও অনিশ্চয়তাবাদ সমস্ত ভবিষ্যদ্বাণীর নির্ভুলতাকে সীমিত করে তবুও এ তত্ত্ব একই সঙ্গে স্থান-কালের অনন্যতার মূলগত অনিশ্চয়তা (unpredictability) হয়তো দৃরীভৃত করে।

চ lainternet

মহাবিশ্বের উৎপত্তি ও পরিণতি

(The Origin and Fate of the Universe)

আইনস্টাইনের ব্যাপক অপেক্ষবাদ স্বতঃপ্রণোদিত হয়ে তবিষাহাণী করেছে স্থান-কালের শুরু বৃহৎ বিস্ফোরণের অননাতায় এবং শেষ হবে হয় বৃহৎ সঞ্জোচনের (big crunch) অননাতায় (যদি সমগ্র মহাবিশ্ব আবার চুপ্সে যায়) কিম্বা একটি কৃষ্ণগহরের ভিতরকার অনন্যতায় (যদি তারকার মতো স্থানীয় একটি অঞ্চল চুপ্সে যায়)। যে কোনো পদার্থ ঐ গহরে পড়লে ঐ অননাতায় সেটা ধ্বংস হয়ে যাবে। বাইরে থেকে শুধুমাত্র ঐ ভরের মহাকষীয় অভিক্রিয়াই (gravitational effect) বোধগমা হতে থাকবে। অনাদিকে যখন আবার কণাবাদী অভিক্রিয়াই (quantum effect) বিচার করা হল তখন মনে হল ঐ পদার্থের ভর কিম্বা শক্তি শেষ পর্যন্ত মহাবিশ্বের অবশিষ্টাংশে ফিরে যাবে এবং কৃষ্ণগহরটি উবে যাবে এবং তার ভিতরে যদি কোনো অননাতা থাকে ভাহলে সেটা সমেত উবে যাবে (evaporate) এবং শেষ পর্যন্ত হয়ে যাবে (disappear)। কণাবাদী কাবিদ্যার কি বৃহৎ বিস্ফোরণ কিম্বা বৃহৎ সম্বোচনের অননাতার মতো একই রকম একটি নাটকীয় অভিক্রিয়া থাকতে পারে? মহাবিশ্বের অভিপ্রাথমিক অবস্থায় কিম্বা শেষ অবস্থায় যখন মহাকর্ষীয় ক্ষেত্র এত শক্তিশালী যে কণাবাদী অভিক্রিয়াকে (quantum effect) অগ্রাহ্য করা যায় না— তখন আসলে কি ঘটে? মহাবিশ্বের কি সভিটি কোনো শুরু কিম্বা শেষ আছে? যদি থাকে, তাহলে তারা কি রকম ?

১৯৭০ দশকের পুরোটাই আমি কৃষ্ণগহুর নিয়ে গবেষণা করেছি কিন্তু ১৯৮১ সালে জেসুইটদের ভ্যাটিক্যানে (Vatican) সংগঠিত সৃষ্টিতত্ত্বের (cosmology) উপর একটি আলোচনা সভায় যোগদানের পর মহাবিশ্বের উৎপত্তি এবং পরিণতি বিষয়ক প্রক্লে আমার আবার নতুন করে আকর্ষণ জেগে ওঠে। বৈজ্ঞানিক বিষয়ে আইন বানাতে গিয়ে ক্যাথলিক চার্চ গ্যালিলিওর ব্যাপারে একটি বিশ্রী ভুল করেছিল। তাঁরা ঘোষণা করেছিলেন সূর্য পৃথিবীকে

প্রদক্ষিণ করে। এখন কয়েক শতাব্দী পর তাঁরা সৃষ্টিতত্ত্ব সম্পর্কে উপদেশ দেওয়ার জন্য **কয়ে**কজন বিশেষপ্তাকে আমন্ত্রণ জান্যনোর সিদ্ধান্ত গ্রহণ করেছিলেন। সম্মেলন শেষ হওয়ার পর সম্মেলনৈ অংশগ্রহণকারীদের পোণ দর্শন দান করেন। তিনি আমাদের বলেছিলেন, বৃহৎ বিস্ফোরণের পর মহাবিশ্বের বিবর্তন নিয়ে গবেষণায় কোনো দোষ নেই কিন্তু বৃহৎ বিস্ফোরণ সম্পর্কে কোনো গবেষণা করা উচিৎ হবে না। কারণ সেটা ছিল সৃষ্টির মুহূর্ত এবং সৃষ্টিটা ঈশ্বরের কর্ম। সেই সম্মেলনে তখনই আমি যে বক্তুতা করে এসেছি সেটা ছিল স্থান-কালের সীমিত অথচ সীমাহীন হওয়ার সম্ভাবনা সম্পর্কে। অর্থাৎ এর কোনো শুরুও নেই, কোনো সৃষ্টি-মুহুর্তও নেই। তিনি যে আমার বকুতার বিষয়বস্তু জানতেন না তাতে আমি খুলী। গ্যালিলিও-র সঞ্চে বেশ একাস্থতা বোধ করি কিন্তু আমার পরিশত্তি তাঁর মতো হোক এরকম কোনো ইচ্ছা আমার ছিল না। এই একাছাতা বোধের আংশিক কারণ আমি জন্মেছি তাঁর মৃত্যুর ঠিক তিনশ বছর পর।

256

মহাবিশ্বের উৎপত্তি এবং পরিণতি বিষয়ে কণাবাদী বলবিদ্যা কিরকম প্রভাব বিস্তার করতে পারে সে বিষয়ে আমার এবং অন্যান্য কয়েকজনের চিন্তাধারা ব্যাখ্যা করতে হলে প্রথম জানা দরকার "উত্তপ্ত বৃহৎ বিস্ফোরণ প্রতিরূপ" (hot big bang model) নামে পরিচিত মহাবিশ্বের স্বীকৃত ইতিহাস বোঝা। এই তত্ত্ব অনুসারে অনুমান করা হয়: একদম শুরু থেকে মহাবিশ্বের বিবরণ পাওয়া যায় একটি ফ্রিডম্যান প্রতিরূপে (Friedmann's model) । এই সমস্ত প্রতিরূপে দেখা যায় মহাবিশ্বের সম্প্রসারণ হলে তার ভিতরের যে কোনো পদার্থ কিন্তা বিকিরণ শীতলতর হয়। (মহাবিশ্বের আকার দ্বিগুণ হলে তার তাপমাত্রা হয়ে যায় অর্থেক)। তাপমাত্রা কণাগুলির গড় শক্তি কিন্বা দ্রুতির পরিমাপ। সূতরাং মহাবিশ্বের শীতলতর হওয়ার ফলে তার অন্তর্ভুক্ত গদার্ঘের উপর ক্রিয়া হবে বৃহৎ (major effect)। তাপমাত্রা খুব বেলী হলে কণাগুলি এত দ্রুত চলাচল করতে থাকবে যে পারমাণবিক কিম্বা বিদ্যুৎ-চুম্বকীয় যে কোনো বলজাত পারস্পরিক আকর্ষণ খেকে তারা মুক্ত হতে পারবে কিন্ত তারা শীতলতর হলে, আশা করা যায়, যে সমস্ত কণা পরস্পরকৈ আকর্ষণ করে তারা সংযুক্ত হতে শুরু করবে (clump together)। তাছাড়া মহাবিশ্বে কি রকম কণার অস্তিত্ব থাকবে সেটাও নির্ভর করতে তাপমাত্রার উপর। তাপমাত্রা যথেষ্ট উচ্চ হলে কলাগুলির শক্তি এত বেশী হবে যে তাদের ভিতর সংঘর্ষ হলে নানারকম কণা এবং বিপরীত কণার জ্বোড়া (particle/antiparticle pair) উৎপন্ন হবে ৷ বিপরীত কণাগুলিকে আঘাত করার ফলে এগুলির কিছু কিছু ধ্বংস হবে। কিছু কণাগুলি যত দ্রুত ধ্বংসপ্রাপ্ত হবে উৎপন্ন হবে তার চাইতে দ্রুত। তাপমন্ত্রা নিয়ুতর হলে কিম্ব সংঘর্ষমান কণাগুলির শক্তি হবে কম এবং কণিকা/বিপরীত কণিকার জ্যোড় উৎপদ্ধ হবে স্বল্প দ্রুল্যত এবং ধ্বংদের হার হবে উৎপাদনের হারের চাইতে रवनी।

মনে করা হয় বিস্ফেরণের সময় মহাবিশ্বের আয়তন ছিল শূন্য সূতরাং উত্তাপ ছিল অসীম। কিন্তু মহাবিশ্ব সম্প্রসারিত হওয়ার সঙ্গে সঙ্গে বিকিরণের তাপমাত্রা কমতে থাকে। বৃহৎ বিশেষরণের এক সেকেণ্ড পর তাপমাত্রা নেমে এসেছিল প্রায় এক হাজার কোটি ডিগ্রীতে। এ তাপ সুর্যের ক্ষেদ্রের তাপের চাইডে প্রায় এক হাজার গুণ বেশী কিন্ত হাইড্রোজেন বোমা

বিশেষরদের সময় উত্তাপ এই মাত্রায় পৌঁছায়। এই অবস্থায় মহাবিশ্বের ভিতরে প্রায় সবটাই থাকত ফোটন, ইলেকট্রন এবং নিউট্টিনো (অত্যন্ত হাল্কা কণিকা, এগুলিকে প্রভাবিত করতে শারে শুধুমাত্র দুর্বল বল এবং মহকের্ব) এবং তাদের বিপরীত কণিকা — তাছাড়া থাকে কিছ প্রোটন এবং নিউট্রন। মহাবিশ্ব যেমন সম্প্রসারিত হচ্ছিল তাপমাত্রা তেমনি কমছিল। সংঘর্ষের ফলে ইলেক্ট্রন/বিপরীত ইলেক্ট্রনের জ্যেড় তৈরীর হার-- সেগুলি ধ্বংসের হারের অনেক নিচে নেমে আসছিল। সূতরাং অধিকাংশ ইলেক্ট্রন আর বিপরীত ইলেক্ট্রন পরস্পরকে ধ্বংস করে আরো ফোটন উৎপন্ন করল — অবশিষ্ট রইল কিছু ইলেকট্রন। নিউট্রিনো এবং বিপরীত নিউট্রিনো পরস্পরকে ধ্বংস করতে পারল না, কারণ এই কণিকাগুলির নিজেদের ভিতরে পারস্পরিক ক্রিয়া এবং অনা কণিকার সঙ্গে ক্রিয়া পুবই দুর্বল। সুওরাং এখনও এগুলির বর্তমান থাকা উচিৎ। এগুলিকে যদি আমরা পর্যবেক্ষণ করতে পারতাম ভাহলে প্রথম যুগের উত্তপ্ত মহাবিশ্ব পরীক্ষার একটি ভাল সুযোগ পাওয়া থেত। কিছু দুর্ভাগ্যক্রমে বর্তমানে ওাদের শক্তি এত কম হবে যে তাদের প্রত্যক্ষতাবে পরীক্ষা করা হবে অসম্ভব। ১৯৮১ সালের একটি রুশ বৈজ্ঞানিক পরীক্ষা থেকে ইঙ্গিত পাওয়া যায়--এগুলির সামান্য নিজস্ব ভর রয়েছে। এই পরীক্ষাফল এখনও সত্য বলে প্রমাণিত হয়নি। এটা যদি সতা হয় তাহলে হয়তো পরোক্ষভাবে এর অস্তিত্বের নিদর্শন আমরা শেতে পারি। আগে যেরকম উল্লেখ করা হয়েছে শেরকম আলোকহীন পদার্থ (dark matter) তারা হতে পারে। মহাবিদ্ধের সম্প্রসারণ বন্ধ করা এবং পুনর্গার চুপ্সে দেওয়ার মতো পর্যাপ্ত মহাকর্ষীয় আকর্ষণ তাদের থাকতে পারে।

বৃহৎ বিস্ফোরণের প্রায় একশ সেকেণ্ড পর তাপমাত্রা হয়তো একশ কোটি ডিগ্রীতে নেমে এসেছে। সব চাইতে উতত্ত ভারকাগুলির অভান্তরে এই তাপমাত্রা পাওয়া যায়। এই উত্তাপে শক্তিশালী কেন্দ্রকীয় বলের (strong nuclear force) আকর্ষণ থেকে মুক্তি পাওয়ার পক্ষে যথেষ্ট শক্তি প্রোটন নিউট্রনের থাকে না— তখন তারা মিলিত হয়ে হয়তো ভূয়েটেরিয়ায (deuterium - ভারী হাইড্রোজেন) গঠন করতে শুরু করতে গারে। এই পরমাণুতে পাকে একটি প্রোটন এবং একটি নিউট্রন। তথন ভূয়েটেরিয়াম কেন্দ্রক হয়তো আরো প্রোটন এবং নিউট্রনের সঙ্গে মিলিত হয়ে হিলিয়াম কেন্দ্রক তৈরী করবে। হিলিয়ামে থাকে দৃটি প্রোটন আর দৃটি নিউট্টন, তাহাড়া হয়তো তৈরী হবে অল্প পরিমাণে অপেক্ষাকৃত ভারী দটি মৌলিক পদার্থ লিথিয়াম (lithium) একং বেরিলিয়াম (beryllium)। হিদাব করে কলা যায় উভগু কৃহৎ বিস্ফোরণ প্রতিরূপে প্রোটন এবং নিউট্রনের প্রায় এক চতুর্থাংশ পরিবর্তিত হবে অল্প পরিমাণ--ভারী হাইড্রোজেনে এবং অন্যান্য মৌলিক পদার্থে। অবশিষ্ট নিউট্রনের অবক্ষয়ের ফলে তৈরী হবে প্রোটন। এগুলি সাধারণ হাইড্রোজেনের কেন্দ্রক।

रेंक्सनिक सर्स शास्त्रा (George Gamow) केंद्र अकक्षन ছाত्र शास्त्र ज्ञानकारतर (Raiph Alpher) সঙ্গে ১৯৪৮ সালে লিখিত একটি বিখ্যাত গবেষণাপত্তে মহাবিশ্বের উত্তপ্ত প্রাথমিক অবস্থার একটি চিত্র প্রকাশ করেন। গ্যামো বেশ রসিক ব্যক্তি ছিলেন। ডিনি নিউক্লীয় বিজ্ঞানী হান্স বেখেকে (Hans Bethe) ওই গবেষণাপট্রের সঙ্গে তাঁর নাম যুক্ত করতে রাজী করান। **ফলে লেখকদের তালিকা হয় "আালফার, বেখে, গ্যামো"। এই** তিনটি নামের আগ্যক্তর দ্রীক অক্ষর আলফা, বিটা, গামার অনুরূপ। মহাবিশ্বের আদি পর্ব সম্পর্কে প্রবন্ধে এই তিনটি অক্ষর বিশেষভাবে উপযুক্ত। এই প্রবন্ধে তাঁরা একটি উল্লেখযোগ্য ভবিষ্যদ্বাদী করেছিলেন ।
মহাবিশ্বের আদিপর্বের অতি উত্তপ্ত অবস্থার বিকিরণ (ফোটন রূপে) এখনও থাকা উচিং।
তবে তার তাপমাত্রা হ্রাস পেয়ে চরম শুন্যের (—২৭৩ ডিগ্রী) কয়েক ডিগ্রী বেলী হতে পারে।
১৯৬৫ সালে এই বিকিরণই পেঞ্জিয়াস (Penzias) এবং উইলসন (Wilson) আবিষ্কার
করেন। আলফার, বেখে এবং গ্যামো যখন তাঁদের গবেষণাপত্রটি লিখেছিলেন, তখন প্রোটন
এবং নিউট্রনের নিউক্লীয় প্রতিক্রিয়া সম্পর্কে খুব বেলী জানা ছিল না। আদিম মহাবিশ্বে বিভিন্ন
মৌলিক উপাদানের অনুপাত সম্পর্কে ভবিষ্যদ্বাদী সেইজনা খুব নিশ্চিত হয়নি। কিন্তু উন্নততর
জ্ঞানের আলোকে এই গণনা আবার করা হয়েছে এবং এখন আমাদের পর্যবেক্ষণফলের সঙ্গে
তার যথেষ্ট মিল রয়েছে। তাছাড়া, মহাবিশ্বে এত বেশি পরিমাণে হিলিয়ামের অক্তিত্ব অনা
কোনোভাবে ব্যাখ্যা করা খুবই শক্ত। অক্ততপক্ষে বৃহৎ বিশ্বোরণের এক সেকেণ্ড পর পর্যন্ত
আমাদের চিত্রটি যে নির্ভুল সে বিষয়ে আমাদের যোটামুটি বিশ্বাস রয়েছে।

বৃহৎ বিশেষরণের কয়েক ঘন্টার ভিতরেই হিলিয়াম এবং অন্যান্য মৌলিক উপাদানের উৎপাদন বস্কু হয়ে যাওয়ার সম্ভাবনা। ভারপর প্রায় দশ লক্ষ বছর পর্যন্ত মহাবিশ্বের সম্প্রসারণ ছাড়া আর বিশেষ কিছু ঘটেনি। শেষে তাপমাত্রা যখন কয়েক হাজার ডিগ্রীতে নেমেছে এবং ইলেক্ট্রন ও কেন্দ্রকগুলির পারস্পরিক বিদ্যুৎ-চুম্বকীয় আকর্ষণ অতিক্রম করার মতো পর্যাপ্ত শক্তি আর থাকেনি, তখন তাদের মিলিড হয়ে পরমাণু গঠন করার সন্তাবনা হয়। সম্পূর্ণ মহাবিশ্বই সম্প্রসারিত এবং শীতলতর ইতে থাকত কিছু যে সমস্ত অঞ্চলের ঘনত্ব গড় ঘনত্বের চাইতে সামান্য বেশী সেই সমস্ত অঞ্চলের অতিরিক্ত মহাক্ষীয় আকর্ষণের দরুন সম্প্রসারণ ষীরতর হওয়ার সম্ভাবনা দেখা দেয়। এইজন্য অবশেষে কোনো কোনো অঞ্চলে সম্প্রসারণ বন্ধ হয়ে নতুন করে চুপ্সে যাওয়া শুরু হওয়ার কথা। চুপ্সে যাওয়ার সময় এই সমস্ত অঞ্চলের বাইরের পদার্থের মহাকষীয় আকর্ষণের ফলে এগুলির সামান্য ঘূর্ণন শুরু হতে পারে। চুপুসে যাওয়ার ফলে অঞ্চলগুলি যেমন ক্ষুদ্রতর হবে ঘূর্ণনও তত দ্রুত হবে। ব্যাপারটা অনেকটা যারা বরফের উপর স্কেটিং করে তাদের মতো- হাত দৃটি গুটিয়ে নিলে তাদের ঘূর্ণনও ফ্রুততর হয়। শেষে অঞ্চলটি যখন যথেষ্ট ক্ষুদ্র হরে তখন মহাকর্ষীয় আকর্ষণের সঙ্গে ভারসাম্য রক্ষা করার মতো পর্যাপ্ত ক্রুতি হবে ঘূর্ণনের। এই ভাবেই ঘূর্ণায়মান চাকতির মতো নীহারিকাগুলির জন্ম হয়েছে। অন্যান্য যে সমস্ত অঞ্চল ঘূর্ণন শুব্রু করতে পারেনি সেগুলি ডিম্বাকৃতি বস্তুপিশু (oval shaped objects) পরিণত হয়। এগুলির নাম উপবৃত্তাকার নীহারিকা। এগুলিতে অঞ্চলটির চুপুসে যাওয়া বন্ধ ইয়ে যাবে কিছ নীহারিকার অংশগুলি কেন্দ্রকে ছির গতিতে প্রদক্ষিণ করবে তবে সম্পূর্ণ নীহারিকাটির কোনো চক্রাকার গতি থাকবে না।

কালের গতির সঙ্গে নীহারিকাগুলির হাইড্রোজেন এবং হিলিয়াম গ্যাস ক্ষুত্রতর মেঘ
খণ্ডে তেঙে যাবে এবং সেগুলি নিজেদের মহাকর্ষের চাপে চুপ্সে যেতে থাকবে। এগুলির
সঙ্গোচন এবং ভিতরকার পরমাণুগুলির পরম্পর সংঘর্ষের ফলে গ্যাসের তাপমাত্রা বাড়তে
থাকবে। শেষে যথেষ্ট উত্তপ্ত হলে কেন্দ্রকীয় সংযোজন অভিক্রিয়া (neuclear fusion
reaction) শুরু হয়ে যাবে। এর ফলে হাইড্রোজেনগুলি আরো হিলিয়ামে পরিণত হবে। এর
দরুন যে উত্তাপ সৃষ্টি হবে তার ফলে চাপ বৃদ্ধি পাবে এবং সেইজন্য মেখগুলির অধিকতর

সজ্যেচন বন্ধ হয়ে যাবে। এগুলি স্থির অবস্থায় বহুকাল পর্যন্ত আমাদের সূর্যের মতো তারকা ছয়ে থাকতে পারে। ভারা হাইড্রোজেন পুড়িয়ে হিলিয়াম তৈরী করে এবং ভার ফলে যে শক্তি উৎপন্ন হয় সেটা আলোক ও ভাপ ব্লেশে বিকিরণ করে। আরও বৃহৎ ভারকাগুলির নিজেদের বৃহত্তর মহাক্ষীয় আকর্ষণের সঙ্গে ভারসায়া রক্ষার জন্য উত্তপ্ত হতে হয়, ফলে কেন্দ্রকীয় সংযোজন প্রক্রিয়া এত দ্রুত হতে থাকে যে মাত্র দশ কোটি বছরেই তাদের হাইড্রোজেন শৈষ হয়ে যায়। তখন তাদের সামানা সন্ধোচন হয় এবং তাদের উত্তাপ বাড়ার সঙ্গে সঞ্চে হিলিয়াম, অক্সিজেন এবং অঙ্গারের (carbon-কার্বন) মতো আরো ভারী যৌলিক পদার্থে রূপান্তরিত হতে শুরু করে। কিন্তু তার ফলে খুব বেশী শক্তি মূক্ত হয় না, সূতরাং একটা সঙ্কট ঘনিয়ে আসে। কৃষ্ণগহরের অধ্যায়ে এর বর্ণনা দেওয়া হয়েছে। তারপর কি ঘটে সেটা সম্পূর্ণ বোঝা যায় না, কিম্ব মনে হয় ভারকাটির কেন্দ্রীয় অঞ্চল চুপ্সে নিউট্রন ভারকা কিম্বা কৃষ্ণগহুরের মতো খুব ঘন অবস্থায় পৌঁছায়। তারকাটির বাইরের অঞ্চল অনেক সময় বিরাট এক বিস্ফোরণের ফলে বিচ্ছিন্ন হয়ে বেরিয়ে যায়। এর নাম সুপারনোভা (supernova)। নীহারিকাটির সমস্ত তারকার তুলনায় এটা হয় সবচাইতে উজ্জ্বল। তারকার জীকাকালের শেষ দিকে উৎপন্ন কিছু কিছু ভারী মৌলিক পদার্থ নীহারিকার বায়ুর (gas) ভিতরে নিক্ষিপ্ত হয়। এগুলি পরিণত হয় পরের প্রজন্মের তারকাদের ব্যবহৃত কাঁচামালের একটি অংশে। আন্যাদের সূর্য দ্বিতীয় কিম্বা তৃতীয় প্রজব্যের তারকা। অতীতের সুপারনোভার ধ্বংসাবশেষণ্ড গুর্ণায়মান বায়বীয় পদার্থের মেঘ থেকে প্রায় পাঁচশ কোটি বছর আগে আমাদের সূর্য গঠিত ছয়েছে। সেইজন্য আমাদের সূর্যে অধিকতর ভারী মৌলিক পদার্থের অনুপাত প্রায় শতকরা দুই ভাগ। ঐ বায়বীয় পদার্থের অধিকাংশই লেগেছে সূর্যকে তৈরী করতে আর বাকিটা উড়ে বেরিয়ে গিয়েছে। অবশিষ্ট অল্প পরিমাণ কিছু ভারী মৌসিক পদার্থ সংযুক্ত হয়ে কতকগুলি বস্তপিও তৈরী হয়েছে। সেগুলিই এখন গ্রহ হয়ে সূর্যকে প্রদক্ষিণ করে। পৃথিবী ঐরকম একটি গ্রহ।

ভরতে পৃথিবী ছিল অতান্ত উত্তপ্ত। পৃথিবীর কোনো বায়ুমণ্ডল (atmosphere) ছিল না। কালে কালে পৃথিবী শীতল হল এবং বিভিন্ন প্রস্তাব থেকে নির্গত হওয়া বাবনীয় শলার্থের সাহায়ে নিজস্ব বায়ুমণ্ডল গঠন করল। এই আদিম বায়ুমণ্ডল আমাদের জীবনধারণের উপযুক্ত ছিল না। সে বায়ুমণ্ডল অন্ধিজন ছিল না কিন্ত মানুষের পক্ষে বিষক্তে অনেক বায়ু ছিল। উদাহরণ: হাইড্রোজেন সালফাইড (পচা ডিমের গন্ধ হয় এই গ্যাসের জন্য)। কিন্তু জন্য কয়েক রকম অদিয় জীব আছে যেগুলি এই পরিবেশে বৃদ্ধি পেতে পারে। সম্ভবত এগুলি প্রথম বিকাশ লাভ করেছিল মল্বমুদ্রে। বোধ হয় কতকগুলি পরমাণুর আক্রমিক সমন্বয়ে কয়েকটি বৃহত্তর অব্যব সৃষ্টি হয়েছিল। সেগুলির নাম স্থল অণু (macromolecule)। এগুলি মহাসমুদ্র থেকে অন্যান্য পরস্বাপু সংগ্রহ করে সমন্ত্রপ অব্যব গঠন করতে পারত। পুতরাং এইভাবে তারা বংশবৃদ্ধি এবং বংশরক্ষা করতে পারত। কোনো কোনো ক্ষেত্রে সন্ধান সৃষ্টিতে তুল হতো। অধিকাংশ ক্ষেত্রে ভুলটা এমন হোত যে নতুন স্থল অণুগুলি নিজেদের কংশরক্ষা করতে অক্ষম হোত এবং শেষ পর্যন্ত ধ্বংস হয়ে যেত। কিন্তু দুয়েকটি এমন ভুল হোত, যার ফলে যে নতুন স্থল অণুগুলির গরিবর্তে স্বার ফলে যে নতুন স্থল অণুগুলির পরিবর্তে স্বার থলে যে নতুন স্থল অণুগুলির পরিবর্তে স্বার থলে যে নতুন স্থল অব্যু হোত আরও কেশী পূট্ট। সুতরাং ভাদের অবস্থা হোত আর একটু সুবিধাজনক এবং আদিয় স্থল অণুগুলির পরিবর্তে

নিজেদের প্রতিস্থাপন করার (replace) সম্ভাবনা থাকত। এইভাবেই একটি বিবর্তনের খারা শুরু হল। তার ফলে ক্রমশ আরো জটিল থেকে জটিলতর আত্মন্ত সৃষ্টি করতে সক্ষম জীব বিকাশ লাভ করন। নানা পদার্থ আদিম জীবের ভক্ষ্য ছিল-- হাইড্রোজেন সালফাইড সেগুলির ভিতর একটি। এরা অক্সিজেন পরিত্যাগ করত। এইভাবে ঘীরে ঘীরে বায়ুমণ্ডল পরিবর্তিত হয়ে আধুনিক অবস্থায় পৌঁছেছে। এর ফলে উচ্চতর জীবের বিকাশ সম্ভব হয়েছে, যেমন-মাছ, সরীসৃপ, স্তনাগায়ী দ্বীব এবং পরিশেষে মানবন্ধাতি।

অতান্ত উত্তপ্ত অবস্থা থেকে প্রসারশের সঙ্গে সঙ্গে শীতলতর হয়েছে: মহাবিশ্বের এই চিত্রের সঙ্গে পর্যবেক্ষণজাত আধুনিক সমস্ত সাক্ষ্যের মিল রয়েছে। তবুও কয়েকটি গুরুত্বপূর্ণ প্রপ্লের উত্তর পাওয়া যায় নি :

(১) আদিম মহাবিশ্ব কেন অত উত্তপ্ত ছিল?

705

- (২) বৃহৎ মানে (large scale) বিচার করলে মহাবিশ্ব এরকম সমরূপ কেন? স্থানের সমস্ত বিন্দু থেকে বিভিন্ন অভিমুখে মহাবিশ্বকে একই রকম দেখায় কেন ? বিশেষ করে বিভিন্ন দিকে পর্যবেক্ষণ করলে পশ্চাৎপটের মাইফ্রোওয়েভ বিকিরণের তাপমাত্রা প্রায় একই রকম কেন ? ব্যাপারটা অনেকটা পরীক্ষার সময় অনেকগুলি ছাত্রকে একটি প্রশ্ন করার মতো। সবাই যদি একই রকম উত্তর করে তা হলে আপনি মোটামৃটি নিশ্চিত হতে পারেন যে ওদের নিজেদের ভিতর যোগাযোগ ছিল। আদিম মহাবিশ্বের বিভিন্ন অঞ্চল কাছাকাছি ছিল কিন্তু উপরে বর্ণিত প্রতিরূপ অনুসারে বৃহৎ বিস্ফোরণের পর আলোকের এক অঞ্চল থেকে দুরস্থিত অন্য অঞ্চলে যাওয়ার সময় ছিল না। অপেক্ষবাদ অনুসারে যদি এক অঞ্চল থেকে অন্য অঞ্চলে আলোক না যেতে পারে ভাছলৈ কোনো সংবাদই যেতে পারে না। সূতরাং ব্যাখ্যার অতীত কোনো কারণে যদি একই তাপমাত্রা খেকে শুরু না হয়ে থাকে তাহলে মহাবিশ্বের বিভিন্ন অঞ্চলের একই তাপমাত্রা হওয়ার কোনো করেণ দেখা যায় নাঃ
- (৩) মহাবিশ্বের সম্প্রসারশের হারের যে বিভিন্ন প্রতিরূপ রয়েছে তার কয়েকটিতে মহাবিশ্বের আবার চুণ্সে যাওয়ার কথা-- আর অন্য কয়েকটি প্রতিরূপে মহাবিদ্ব সম্প্রসারিত হতেই থাকবে। এই হারকে বন্ধা হয় ক্রান্তিক হার (critical rate)। সম্প্রসারণের এই ক্রান্তিক হার কেন হল- যার জন্য এক হাজার কোটি বছর পরও মহাবিশ্ব প্রায় একই হারে সম্প্রসারিত হয়ে চলেছে ? বৃহৎ বিশ্ফোরণের এক সেকেণ্ড পর যদি সম্প্রসারণের হার এক লক্ষ মিলিয়ান মিলিয়ান (১০০,০০০,০০০,০০০,০০০,০০০) ভাগাও কম হোত ভাহলে মহাবিশ্ব বর্তমান আয়তনে শৌহানোর আগেই চুপুসে যেত।
- (৪) বৃহৎ মানে (large scale) বিচার করলে দেখা যায় মহাবিশ্ব খুবই সমক্ষপ (uniform) এবং সমসত্সম্পন্ন {homogeneous}। তা সত্ত্বেও ছানিক অনিয়ম রয়েছে, যেমন-- তারকা, নীহারিকা ইত্যাদি। মনে হয় আদিম মহাবিশ্বে ঘনতে সামানা আঞ্চলিক পার্থকোর জন্যই এগুলি সৃষ্ট হয়েছে। ঘনত্বের এই হ্রাসবৃদ্ধির কারণ कि ছिन ?

ব্যাপক অশ্বেক্ষবাদ স্বতত এই সমস্ত অধ্যব ব্যাখ্যা করতে পারে না— কিয়া এই সমস্ত প্রশ্নের উত্তরও দিতে পারে না। তার কারণ, এই তত্ত্বের ভবিষয়েণী অনুসারে মহাবিশ্ব বৃহৎ বিস্ফোরণের অনন্যতার সময় শুরু হয়েছিল অসীম ঘনত্ব দিয়ে। এই অনন্যতার ক্ষেত্রে ব্যাপক অপেক্ষবাদ এবং অন্যান্য ভৌত বিধিগুলি ভেঙে পড়বে : এই অনন্যতার ফলশ্রুতি কি হবে সে সম্পর্কেও ভবিষ্যদ্বাদী করা যাবে না। এর আগে বাখ্যা করা হয়েছে কুহৎ বিশ্বেদরণ কিছা তার আগেকার যে কোনো ঘটনা এই তত্ত্ব থেকে বাদ দেওয়া চলে। তার কারণ, আমাদের পর্যবেক্ষণফলের উপর সেগুলির কোনো প্রভাব থাকা সম্ভব নয়। স্থান-কালের একটি সীমানা থাকবে। বৃহৎ বিশ্বেদারণে তার শুরু।

মনে হয় বিজ্ঞান কয়েকটি বিধির গুচ্ছ আবিষ্কার করেছে। আমরা যদি যে কোনো কালে মহাবিশ্বের অবস্থা জানতে পারি তাহলে এই বিধিগুলির সাহায্যে কালের সঙ্গে তার ভবিষাৎ বিকাশ সম্পর্কে বলা সম্ভব। অবশ্য এই ক্ষমতা অনিশ্চয়তার নীতির দ্বারা সীমিত। শুরুতে এগুলি ইম্বরের বিধান হতে পারে কিছ মনে হয় তারপর থেকে তিনি মহাবিশ্বকে ওঁই বিধিগুলি অনুসারে বিবর্তিত হওয়ার স্বাধীনতা দিয়েছেন এবং তিনি আর এ ব্যাশারে হন্তক্ষেপ করেন না। কিন্তু তিনি কিভাবে মহাবিশ্বের প্রাথমিক অবস্থা কিম্বা গঠন নির্বাচন করেছিলেন ? কালের শুরুতে "সীম্যন্তের গঠন" (boundary condition) কি রকম ছিল ?

একটি সম্ভাব্য উত্তর হল : ঈশ্বর কেন মহাবিশ্বের এই প্রাথমিক গঠন বেছে নিয়েছিলেন আমানের সেটা বোঝার আশা নেই। সর্বশক্তিমান কোনো জীবের পক্ষে নিশ্চয়ই এটা সম্ভব ছিল কিন্তু কেন ডিনি ব্যাপারটা এমনভাবে শুরু করলেন থা কিছুতেই বোঝা সম্ভব নম, আবার কেনই বা তিনি এমন বিধি অনুসারে এর বিবর্তনের স্বাধীনতা দিলেন যা আমাদের পক্ষে বোঝা সপ্তব ? বিজ্ঞানের সম্পূর্ণ ইতিহাস হল ধীরে ধীরে এই বোধ জাগ্রত হওয়া যে ঘটনাগুলি যাদৃচ্ছিকভাবে ঘটে না, সেগুলি অন্তর্নিহিত একটি নিয়মের প্রতিফলন। সে নিয়মগুলি ঈশ্বরের অনুপ্রেরণায় সৃষ্ট হয়ে থাকতে পারে আবার নাও সৃষ্ট হয়ে থাকতে পারে তাঁর অনুপ্রেরণায়। স্বাভাবিকভাবেই ধরে নেওয়া যেতে পারে, এ নিয়ম শুধু বিধিগুলি সম্পর্কেই প্রযোজ্য নয় ! মহাবিশ্বের আদিম অবস্থার বৈশিষ্ট্য যে স্থান-কাল, তার সীমান্তের অবস্থা সম্পর্কেও প্রয়োজা। মহাবিশ্বের প্রাথমিক অবস্থার অনেকগুলি প্রতিরূপ থাকতে পারে এবং সবগুলি প্রতিরূপই বিধি যেনে চলতে পারে। একটি প্রাথমিক অবস্থা বেছে নেওয়ার কারণ হিসাবে একটি নীতি থাকা উচিৎ সূতরাং থাকা উচিৎ একটি প্রতিরূপ যা আমাদের মহাবিদ্বের প্রতীক।

একটি সপ্তাবনার নাম-- সীমানার শৃত্বলোহীন অবস্থা (chaotic boundary conditions)। এগুলির ভিডরে এই অনুমান নিহিত রয়েছে যে মহাবিশ্ব হয় স্থানিকভাবে অসীম নয়তো অনস্তসংখ্যক মহাবিধের অস্তিত্ব রয়েছে। বৃহৎ বিশ্বেষরণের ঠিক পর পর বিশৃঙ্খল সীমান্ত অবহায় মহাবিখের একটি বিশেষ আকারে (configuration) স্থানের একটি বিশেষ অঞ্চল খুঁজে পাওয়ার সম্ভাবনা এবং কোনো কোনো অর্থে অনা যে কোনো আকারপ্রাপ্ত অবস্থায় খুঁজে পাওয়ার সম্ভাবনা একই : মহাবিধের প্রাথমিক অবস্থা নির্বাচিত হয়েছে সম্পূর্ণ অসম্বন্ধভাবে (randomly) i এর অর্থ আদিয় মহাবির ছিল সপ্তবত অত্যন্ত বিশৃশ্বল এবং

নিয়মবিহীন অবহায়। তার কারণ মহাবিদ্ধ সাপেক্ষ নিয়মবদ্ধ এবং মসৃগ আরোরের তুলনায়। বিশৃত্বল এবং নিয়মবিহীন আকারের সংখ্যা অনেক বেশী। (প্রতিটি আকারের সন্তাবনা বদি একইরকম হয় তাহলে হয়তো মহাবিদ্ধ শুকু হয়েছিল বিশৃত্বলে এবং নিয়মবিহীন অবস্থায়, তার সহজ সরল কারণ হল: এই রকম সন্তাব্য আকারেরই সংখ্যা বেশী)। এইরকম বিশৃত্বল প্রাথমিক অবস্থা থেকে আমাদের বর্তমান মহাবিদ্ধ কি করে সৃষ্ট হল সোটা বোঝা কঠিন, কারণ বৃহৎ মানে (large scale) বিচার করলে দেখা যায় আমাদের আন্তকের মহাবিদ্ধ মসৃগ এবং নিয়মবদ্ধ (regular)। গামা রশ্মি পর্যক্ষেণ থেকে যে উচ্চতর সীমা নির্যারণ করা হয়েছে তার চাইতে অনেক বেশী সংখ্যক আদিম কৃষ্ণগহুর গঠিত হওয়া উচিৎ ছিল— ঐ প্রতিরূপে ঘনত্বের যে হ্রাসবৃদ্ধি আশা করা যায় তার ভিত্তিতে।

মহাবিশ্ব যদি সভাই শ্বানিকভাবে অসীম হয় কিশ্বা মহাবিশ্বগুলির সংখ্যা যদি অনম্ব হয় তাহলে সম্ভবত কোনো স্থানে এমন কতকগুলি বৃহৎ অঞ্চল থাকবে যেগুলি হয়েছিল মসৃশ সমরূপ ভাবে। ব্যাপারটি অনেকটা সেই বহু পরিচিত বাঁদরের বিরাট দলের মতো। তারা টাইপরাইটারে আঙুল ঠুকে চলেছে— যা ছাপা হছে তার বেলীর ভাগটাই ভূষিমাল কিছ্ক দৈবাৎ তারা শেল্পপিয়ারের একটি সনেটও টাইপ করে ফেলতে পারে। তেমনি ভাবে মহাবিশ্বের ক্ষেত্রে এমন কি হতে পারে যে আমরা এমন একটি অঞ্চলে রয়েছি যেটা ঘটনাচক্রে মসৃশ এবং নিয়মবন্ধ ? আপাতদৃষ্টিতে ব্যাপারটা পুরই অসম্বাব বলে মনে হতে পারে কারণ ওই রক্ষম মসৃশ অঞ্চলের চাইতে বিশৃত্বল এবং নিয়মবিহীন অঞ্চলের সংখ্যা হবে অনেক বেলী। কিছ্ক যদি অনুমান করা যায় মসৃশ অঞ্চলগুলিতেই নীহারিকা এবং ভারকা গঠিত হয়েছে এবং এই সমস্ত অঞ্চলেই আমাদের মতো আত্মজ (self replicating) সৃষ্টি কণ্ডতে সক্ষম ছাটিল জীব বিকাশের মতো সঠিক পরিস্থিতি রয়েছে এবং এই জীবরাই প্রশ্ন করতে সক্ষম : মহাবিশ্ব এরক্ষম মসৃশ কেন ? এটা হল যাকে নরত্বীয় নীতি (anthropic principle) বলে ভার প্রয়োগের একটি উদাহরণ। একেই অন্য বাশ্বিধিতে প্রকাশ করা যায়— "মহাবিশ্ব যেমন রয়েছে আমরা সেভাবে দেখতে পাই তার কারণ আম্যাদের অস্তিত্ব রয়েছে।"

নরতীয় নীতির দুরকম প্রকাশ রয়েছে— দুর্বল এবং সবল। দুর্বল নরত্বীয় নীতির বন্ধবা: মহাবিশ্ব যদি স্থানে এবং কালে বৃহৎ কিন্তা/এবং (and/or) অসীম হয় তাহলে বৃদ্ধিমান জীবের বিকাশের পক্ষে প্রয়োজনীয় অবস্থা শুধুমাত্র কয়েকটি বিশেষ অঞ্চলেই পাওয়া সম্ভব এবং সেই অঞ্চলগুলি হানে এবং কালে সীমিত। সূতরাং বৃদ্ধিমান জীবরা যদি দেখতে পান যে মহাবিশ্বে শুধুমাত্র তাদের অঞ্চলেই তাদের নিজেদের অক্তিত্ব সম্ভব কবার মতো অবস্থা রয়েছে তাহলে তাদের বিশ্বিত হওয়া উচিৎ নয়। ব্যাপারটা অনেকটা ধনী সোক্ষের ধনী অঞ্চলে বসবাস করে কোনো দারিদ্র দেখতে না পাওয়ার মতো।

দুর্বল নরত্বীয় নীতির প্রয়োজনীয়তার একটি উনাহ্বল— বৃহৎ বিশ্বোরণ কেন এক হাজার কোটি বছর আগে হুটেছিল সেই প্রস্লের এই উত্তর: বিবর্তনে বুদ্ধিমান জীব সৃষ্টির জন্য প্রায় ঐরকম সময়ই লাগে। এর আগে ব্যাখ্যা করা হুয়েছে: প্রথমে প্রয়োজন ছিল পূর্ব প্রজ্ঞান্তর একটি তারকা গঠন করা। এই তারকাগুলি আদি হাইড্রোজেন এবং হিলিয়ামের কিছু অংশকে কার্বন (অঙ্গার) এবং অক্সিজেনের (অক্সজানের) মতো প্রমাণুতে পরিণত করে। এই প্রমাণুগুলি দিয়েই আমরা তৈরী। এরপর তারকাগুলিতে বিস্ফোরণ হয়ে সুপারনোতা (supernovas)
সৃষ্টি হয়েছে। তাদের ধ্বংসাবশেষ দিয়ে তৈরী হয়েছে অন্যান্য তারকা এবং গ্রন্থ। তার ভিতরে
রয়েছে আমাদের সৌরজগং। এর বয়স পাঁচল কোটি বছর। পৃথিবীর অন্তিত্বের প্রথম একল
কিন্তা দুশো কোটি বছর পৃথিবী এত উত্তপ্ত ছিল যে জটিল কিছু সৃষ্টি হওয়া সন্তব ছিল না।
বাকী প্রায় তিনল কোটি বছর কেটেছে ধীর গতিতে জৈব বিবর্তন নিয়ে। এর শুরু হয়েছে
সরলতম জীব দিয়ে এবং এমন জীব সৃষ্টি পর্যন্ত শৌছেছে ধারা বৃহৎ বিস্ফোরণ পর্যন্ত কাল মাপতে পারে।

দুর্বল নরত্বীয় নীতির সত্যতা কিশ্বা প্রয়োজনীয়তা নিয়ে খুব কম লোকই প্রশ্ন করবে।
কিছু লোক কিছা আরো অনেকটা অগ্রসর হয়ে এই নীতির একটি সবল রূপ প্রস্তাব করেছেন।
এই তত্ত্ব অনুসারে হয় ভিন্ন ভিন্ন বহু মহাবিশ্ব রয়েছে, নয়তো একই মহাবিশ্বের রয়েছে নানা
অঞ্চল এবং তাদের প্রাথমিক আকারও (configuration) নিজস্ব। তাদের নিজস্ব বৈজ্ঞানিক
বিধির গুছাও রয়েছে। এই সমস্ত মহাবিশ্বের অধিকাংশেই জটিল জীবের বিকাশের উলযুক্ত
সঠিক অবস্থা নেই। শুধুমাত্র আমাদের মহাবিশ্বের মতো কয়েকটি মহাবিশ্বেই বৃদ্ধিমান জীব
বিকশিত হতে পারে এবং প্রশ্ন করতে পারে— "আমরা যেমন দেখছি মহাবিশ্ব সেরকম হল
কেন ?" উত্তরটা খুব সহজ— "মহাবিশ্ব অনারকম হলে আমরা এখানে থাকতাম না।"

বর্তমানে জ্ঞাত বৈজ্ঞানিক বিধিগুলিতে কয়েকটি মূলগত সংখ্যা আছে— যেমন ইলেকট্রনের বৈদ্যাতিক আধানের আয়তন (size) এবং প্রোটন আর ইলেকট্রনের ভরের অনুপাত। তত্ত্বের সাহাযো আমরা এই সংখ্যাগুলি বলতে পারি না। অন্ততঃ এই মুহুর্তে পারি না। এই সংখ্যাগুলি পেতে হবে পর্যবেক্ষণের সাহায়ে। হতে পারে কোনো একদিন আমরা একটি সম্পূর্ণ ঐক্যবস্ক তত্ত্ব আবিষ্কার করব এবং সে তত্ত্ব এগুলি সম্পর্কে ভবিষাদ্বাদী করতে পারবে কিছু এও সম্ভব হতে পারে যে এগুলির কিছু কিছু কিছা সবগুলিই এক মহাবিশ্ব থেকে অন্য মহাবিশ্বে পূথক হবে কিন্তা একই মহাবিশ্বের বিভিন্ন অঞ্চলে পূথক হবে। একটি উল্লেখযোগ্য ব্যাপার: মনে হয় এই সংখ্যাগুলির মান এমন সৃষ্ণভাবে বিনাপ্ত (adjusted) করা হয়েছে যাতে জীবনের বিকাশ সম্ভব হয়। উদাহরণ; যদি ইলেকট্রনের আধান সামান্য পৃথক হোত ভাহতে তারকাগুলি হাইড্রোজেন আর হিলিয়াম শোড়াতে পারত না কিন্তা তাদের বিস্ফোরল হোত না। অন্য ধরনের বৃদ্ধিমনে জীব অবশ্যই থাকতে পারে, এমন জীব যাদের কথা বৈজ্ঞানিক কল্পকাহিনীর লেখকরাও ভাবতৈ পারেন নি। তাদের হয়তো আমাদের সূর্যের মতো ভারকার আল্যে প্রয়োজন হয় না- প্রয়োজন হয় না যে গুরুতার রাসায়নিক মৌলিক পদার্থগুলি তারকার ভিতরে তৈরী হয় এবং তারকা বিস্ফোরণের সময় স্থানে নিক্ষিপ্ত হয় সেরকম কিছুই। তবুঙ মনে হয় সংখ্যার যানের অল্পসংখ্যক বিন্যাসই (range) যে কোনো প্রকাব বৃদ্ধিমান জীব বিকাশ অনুমোদন করত। মূলামানের অধিকাংশ গুচ্ছাই মহাবিশ্বের জন্ম দিতে পারত, সে মহাবিশ্ব খুবই সুন্দর হলেও সে সৌন্দর্য দেখে অবাক হওয়ার কেউ থাকত না। এই তথ্যকে সৃষ্টির ব্যাপারে এবং বৈজ্ঞানিক বিধি নির্বাচনের ব্যাপারে ঐশ্বরিক উদ্দেশ্যের সাক্ষ্য হিসাবে গ্রহণ করা যেতে পারে কিশ্বা গ্রহণ করা যেতে পারে সকল নরত্বীয় তত্ত্বের প্রমাণ হিসাবে।

মহাবিশ্বের পর্যবেক্ষণ করা অবস্থার ব্যাখ্যা হিসাবে সবল নরত্বীয় নীতিকে উপস্থাপনের

বিরুদ্ধে কছেকটি আপত্তি উত্থাপন করা যেতে পারে। প্রথমত, বিভিন্ন মহারিছের অন্তিত্তের কথা কি অর্থে বলা যায়? তারা যদি সতিইে পরশ্পর থেকে বিচ্ছিন্ন হয়ে থাকে তাহলে অন্য মহারিছে যা ঘটছে আমাদের মহারিছে তার কোনো পর্যবেক্ষণযোগ্য ফল থাকতে পারে না। সূতরাং আমাদের উচিৎ মিতবায়িতার নীতি বাবহার করে ঐ মহারিছগুলিকে তত্ত্ব থেকে বাদ দেওয়া। অন্যথিকে তারা যদি একই মহারিছের বিভিন্ন অঞ্চল হয় তাহলে বিজ্ঞানের বিধি প্রত্যেক অঞ্চলেই অভিন্ন হওয়া উচিৎ, কারণ তাহাড়া এক অঞ্চল থেকে অন্য অঞ্চলে অবিদ্যান্তাবে যাতায়াত সম্ভব নয়। এক্ষেত্রে অঞ্চলগুলির ভিতর এক্যাত্র পার্থকা হবে তাদের প্রাথমিক আকারে সূতরাং সবল নরহীয় নীতি পরিশত হবে দুর্বল নরহীয় নীতিতে।

সবল নরস্থীয় নীতির বিরুদ্ধে দ্বিতীয় আশন্তি হল: এ নীতি বিজ্ঞানের সম্পূর্ণ ইতিহাসের স্নোতের বিরুদ্ধে। আমরা বিকাশ লাভ করেছি টোলেমী এবং তার পূর্বগামীদের পৃথিবীকেন্দ্রিক মহাবিশ্ব তত্ত্বের ভিতর নিয়ে আধুনিক মহাবিশ্ব চিত্রে। এ চিত্রে পৃথিবী একটি সাধারণ সর্লিল (spiral) নীহারিকার প্রান্তিক অক্ষলে অবস্থিত একটি সাধারণ তারকাকে প্রদক্ষিণরত মাঝারি আকারের গ্রহ। এই নীহারিকাটি পর্যবেক্ষণযোগ্য মহাবিশ্বের এক লক্ষ কোটি নীহারিকার ভিতরে একটি। তবুও সবল নরস্থীয় নীতির দাবী এই বিরাট সংগঠনের অস্তিত্ব শুধু আমাদের জনাই। এটা বিশ্বাস করা খুবই শক্ত। আমাদের সৌরজগৎ নিশ্চাই আমাদের অন্তিত্বের একটি পূর্ব শর্ত একং পূর্ব প্রজ্ঞান্তর যে তারকাগুলি তারী মৌলিক পলার্থগুলি তৈরী করেছিল সেগুলিও প্রয়োজন ছিল। সেইজনা এই পূর্ব শর্ত আমাদের নীহারিকা অবধি আমরা বিস্তার করতে পারি। কিন্তু অন্য নীহারিকাগুলির কোনো প্রয়োজন আছে বলে মনে হয় না কিন্তু মনে হয় না এই মহাবিশ্বের প্রতিটি অভিমুখেই এমন সুষম্ম এবং সমন্ত্রপ হওয়ার প্রয়োজন আছে বলে।

বদি দেখানো যেত যে, আমরা যে মহাবিদ্ধ পর্যবেশন করাই সেটা সৃষ্টি করার জন্য বিবর্তনে বেশ কয়েক রকম প্রাথমিক আকারের মহাবিদ্ধ সৃষ্ট হয়েছিল, তাহলে নরছীয় নীতি (অন্ততপক্ষে তার দুর্বল রুপটিকে) মেনে নেওয়া সহজ্ঞতর হোত। ব্যাপারটি যদি তাই হয় তাহলে, যে মহাবিদ্ধের বিবর্তন হয়েছে প্রাথমিক একটি এপোমেলো অবস্থা থেকে, সে ক্ষেত্রে সেখানে এমন কিছু অঞ্চল থাকা উচিৎ ছিল যেগুলি মস্য আর সমরূপ এবং বিবর্তনের ধারায় বুদ্ধিমান জীব সৃষ্টির উপযুক্ত। আবার অনাপক্ষে বলা যায়, আয়রা আমাদের চারিনিকে যা দেখেছি সেই রকম একটা কিছু সৃষ্টি করার জন্য যদি অত্যন্ত সতর্কভাবে মহাবিদ্ধের প্রাথমিক অবস্থা নির্বাচন করা হোতে, তাহলে সে মহাবিদ্ধে জীবের আবির্ভাব হতে পারে এরকম কোনো অঞ্চলের অন্তিপ্রের সন্তাবনা থাকত খুবই কম। এর আগে যে উত্তপ্ত বৃহৎ বিক্ষোরণের প্রতিরাপ দেওয়া হয়েছে সেরকম ক্ষেত্রে আদিম মহাবিদ্ধে উত্তাপের স্রোতের এক অক্তন থেকে অনা অঞ্চলের গাওয়ার পক্ষে যথেষ্ট সময় থাকত না। এর অর্থ: আমরা যে নিকে তাকাই সর্বন্ত মহিনোতরক্ষের তাপমান্ত্রা একই রকম— এই তথ্য ব্যাখ্যা করতে হলে বলতে হয় আদিম অবস্থায় মহাবিদ্ধের সর্বত্রই নির্যুতভাবে একই তাপমান্ত্রা ছিল। মহাবিদ্ধের আবার চুপ্সে যাওয়া এড়ানোর জন্য সংপ্রসারদের যে ক্রান্তিক (critical) হার প্রয়োজন, বাস্তবে সংগ্রসারণের হার এখনও তার এত কাছাকাছি যে সংগ্রসারণের প্রাথমিক হার পুর্বই নির্যুতভাবে নির্বাচনের প্রাথমিক হার পুর্বই নির্যুতভাবে নির্বাচনের প্রাথমিক হার পুর্বই নির্যুতভাবে নির্বাচনের হার এখনিক হার পুর্বই নির্যুতভাবে নির্বাচনের

প্রয়োজন ছিল। এর অর্থ হল উত্তপ্ত বৃহৎ বিস্ফোরণের প্রতিরূপ যদি কালের আরম্ভ থেকেই
সতা হয় তাহলে মহাবিশ্বের প্রাথমিক অবস্থা খুবই সতর্কভাবে বেছে নেওয়া হয়েছিল। মহাবিশ্ব
কেন এভাবে শুরু হয়েছিল এ তথা ব্যাখ্যা করা খুবই কঠিন। একমাত্র ব্যাখ্যা হতে পারে
একজন ইম্বর আমাদের সৃষ্টি করার ইম্ছায় এভাবে কাজ করেছিলেন।

মাাসাচ্সেটস্ ইন্সটিউট অব টেকনোলজির বৈজ্ঞানিক আলান গুণ্ধ (Alan Guth) - এর চেষ্টা ছিল মহাবিশ্বের এমন একটি প্রতিরূপ অশ্বেষণ করা যে প্রতিরূপে বহু প্রাথমিক আকার বিবর্তনের ফলে আধুনিক মহাবিশ্বের মতো একটি জিনিষ সৃষ্টি হয়েছে। তিনি ইন্ধিত করেছেন—আদিম মহাবিশ্ব হয়তো একটি অতিক্রত সম্প্রসারণ কালের ভিতর দিয়ে গিয়েছে। এই সম্প্রসারণকৈ বলা হয় "অভিস্ফিতি" (inflation)। কথাটির অর্থ হল এখন যে রক্ষম সম্প্রসারণের হার হ্রাস পাছে এক সময় সে রক্ষম না হয়ে সম্প্রসারণের হার ক্রমণ বৃদ্ধি শেয়েছে। গুণের মতে, এক সেকেণ্ডের সামানা মাত্র ভয়াংশ কালের ভিতরে মহাবিশ্বের বাাসার্ধ মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান (একের পিঠে ব্রিশটি শূনা) গুণ বৈড়েছে।

গুপের প্রস্তাবনা অনুসারে বৃহৎ বিস্ফোরণের পর মহাবিষের স্তরু অভান্ত উত্তপ্ত কিছা বিশৃদ্ধল (chaotic) অবস্থায়। এই উচ্চ ভাপমাত্রার অর্থ হোড : মহাবিষের কণাগুলি ছিল অতি দ্রুতগতি, তাদের ভিতরে শক্তিও ছিল বেশী। এর আগে আলোচনা করা হয়েছে এরকম উচ্চ ভাপমাত্রায় সবল কেন্দ্রকীয় বল (strong neuclear force), দুর্বল কেন্দ্রকীয় বল (weak neuclear force) এবং বিদাৎ - চুম্বকীয় বল একীভূত হয়ে একটি বলে পরিণত হয়। মহাবিশ্ব সম্প্রসারিত হওয়ার সঙ্গে সঙ্গে শীতলতর হবে এবং কণাগুলির শক্তিও হ্রাস পাবে। শেষে একটি অবস্থা হবে— তার নাম দশার রূপান্তর (phase transition) । এ অবস্থায় বলগুলির ভিতরকার সামল্পসা (symmetry) ভেঙে যাবে : সবল বল বিদাৎ - চুম্বকীয় বল এবং দুর্বল বল থেকে পৃথক হয়ে থাবে। দশার রূপান্তরের একটি সাধারণ উদাহরণ হল : জল ঠাণ্ডা হলে জমে যাওয়া। তরল জল প্রতিসম (symmetrical)— প্রতিটি বিন্দুতে প্রতিটি অভিমুখেই একরূপ। কিন্তু বরফের ক্রিস্টাল গঠিত হলে তারা কোনো একটি অভিমুখে শ্রেণীবন্ধ হয়। এর ফলে জলের প্রতিসম অবস্থা ভেঙে পড়ে।

সাবধান হলে জলকে অতি শীতল (super cool) করা সন্তব। অর্থাৎ তাপমাত্রাকে হিমাজের (০° সে) নিচে নিয়ে আসা কিছ ব্রফ জমতে না দেওয়া। গুমের প্রস্তাকনা ছিল মহাবিশ্বও একই রকম আচরণ করতে পারে অর্থাৎ তাপমাত্রা ক্লান্তিক মানের নিচে নামলেও বলগুলির ভিতরকার সামশ্রসা (symmetry —প্রতিসম অবস্থা) না ভাঙতে পারে। এরকম হলে মহাবিশ্ব সৃষ্টিত (stable) অবস্থায় থাকবে না এবং প্রতিসম অবস্থা তেখে পড়লে যা থাকত তার চাইতে বেশী শক্তি থাকবে। দেখানো যেতে পারে এই বিশেষ বাড়তি শক্তির একটি মহাকর্য বিরোধী ক্রিয়া থাকে। আইনস্টাইন যখন মহাবিশ্বের একটি সৃষ্টিত প্রতিরূপ (static model) গঠন করতে চেষ্টা করেছিলেন তখন তিনি ব্যাপক অপেক্ষবাদে একটি সৃষ্টি তত্ত্ব বিষয়ক প্রবক্ত (cosmological constant— মহাজাগতিক প্রবক্ত) উপস্থিত করেছিলেন।

উপরে লিখিত মহাকর্ষবিরোধী অভিক্রিয়ার আচরণ হতে পারে ঠিক ঐ প্রবক্তির মতো । উত্তপ্ত বৃহৎ বিশ্বেদরশের প্রতিরূপের মতো মহাবিশ্বের প্রদারণ আগেই শুরু হয়ে গিয়েছিল, সূতরাং সৃষ্টিতত্ত্ব বিষয়ক প্রবক্তর বিকরণী ক্রিয়ার ফলে মহাবিশ্ব ক্রমবর্ধমান হারে প্রসারিত হতে থাকত। এমন কি যে সমস্ত অঞ্চলে পদার্থ কণিকার পরিমাণ গড় পরিমাণের চাইতে বেলী সেখানেও পদার্থের আকর্ষণ সৃষ্টিতত্ত্ব বিষয়ক প্রবক্তের কার্যকর বিকর্ষণের চাইতে কম। সূতরাং এই অঞ্চলগুলি একটি ত্বরিত শ্রীতির (accelerated inflationary manner) মতো প্রসারিত হোত। সম্প্রসারিত হওয়া এবং পদার্থ কণিকাগুলির পরস্পর থেকে দূরতর হওয়ার সঙ্গে সঙ্গে এমন একটি প্রসারমান মহাবিশ্ব পাওয়া যেত যেখানে পদার্থ কণিকা প্রায় নেই বললেই চলে এবং যে মহাবিশ্ব তখনও অতি শীতল (super cooled) অবস্থায়। ঠিক যেমন একটি বেলুন ফোলালে তার ভাঁজগুলি মসৃণ হয়ে যায় ঠিক তেমনি সম্প্রসারণের ফলে মহাবিশ্বের বর্তমান মসৃণ এবং সমরূপ অবস্থা নানা ধরনের অমস্থ প্রাথমিক অবস্থা থেকে বিবর্তিত হতে পারে।

যে মহাবিশ্বের সম্প্রসারণ পদার্থের মহাক্ষীয় আকর্ষণ দ্বারা মন্দীভূত না হয়ে সৃষ্টিতত্ত্ব
বিষয়ক প্রশ্বকের দ্বারা ত্বরিত হয়েছে সেই মহাবিশ্বের আদিম অবস্থায় আলোকের এক অঞ্চল
থেকে অন্য অঞ্চলে যাওয়ার মতো পর্যাপ্ত সময় থাকবে। এর আগে একটি সমস্যার উল্লেখ
করা হয়েছিল: আদিম মহাবিশ্বের বিভিন্ন অঞ্চলের একই ধর্ম কেন? উল্লিখিত তথ্য সে
সমস্যার একটি সমাধান দেখাতে পারে। তাছাড়াও মহাবিশ্বের শক্তির ঘনত্ব দ্বারা নিয়ন্ত্রিত
হয়ে সম্প্রসারশের হার স্বতত ক্রান্তিক হারের খুব নিকটে চলে আসবে। সম্প্রসারশের হার
ক্রান্তিক হারের এত নিকট কেন তারও একটি ব্যাখ্যা এ তথ্য থেকে পাওয়া যেতে পারে।
তার জন্য এ অনুমানের প্রয়োজন নেই যে মহাবিশ্বের সম্প্রসারশের হার খুব সতর্কতার সঙ্গে
বৈছে নেওয়া হয়েছিল।

অভিক্ষীতি (inflation) সম্পর্কীয় ধারণা দিয়ে মহাবিশ্বে অত বেশী পরিমাণ পদার্থের অস্তিত্ব ব্যাখ্যা করা যেতে পারে। মহাবিশ্বে যে অঞ্চল আমরা পর্যবেশণ করতে পারি সে অঞ্চলে প্রায় দশ মিলিয়ান, মিলিয়ান (একের পিঠে পাঁচালিটা শূন্য) কণিকা রয়েছে। এগুলি এল কোথেকে? এর উত্তর: কণাবাদিতত্ব (কোয়ান্টাম তত্ব) অনুসারে শক্তি থেকে কণিকা/বিপরীত কণিকার জোড়া রূপে কণিকা তৈরী হতে পারে। কিন্তু তারপারেই প্রশ্ন আসে শক্তি কোথেকে এল? উত্তর হল: মহাবিশ্বে মোট শক্তির পরিমাণ ঠিক শূন্য। মহাবিশ্বের পদার্থ সৃষ্টি হয় পরা (positive) শক্তি থেকে। কিন্তু পদার্থ মহাকর্ষের সাহায়ে নিজেকে সম্পূর্ণ আরুর্ষণ করছে। দুটি বন্ধখণ্ড যদি কাছাকাছি থাকে তাহলে তাদের শক্তির পরিমাণ তারা যদি বহু দুরে থাকে তাহলে তাদের শক্তির পরিমাণের চাইতে কম। তার কারণ, যে মহাক্ষীয় বল তাদের পরম্পরের নিকটে টানছে তার বিরুদ্ধে বন্ধখণ্ড দুটিকে বিচ্ছিয় করতে শক্তি ক্ষয় হয়। সেইজন্য এক অর্থে মহাক্ষীয় ক্ষেত্রের একটি অপরা (negative) শক্তি রয়েছে। যে মহাবিশ্ব ছানে মোটামুটি সমরূপ তার ক্ষেত্রে দেখানো যেতে পারে এই

দ্বালা মহাকর্ষীয় শক্তি (negative gravitational energy) এবং বস্তু যে পরা শক্তির (positive energy) প্রতিনিধি—এরা পরস্পরকে নির্ভূলভাবে বাতিল (cancel) করে। সূতরাং মহাবিশ্বের মোট শক্তি শুনা।

শূন্যের দ্বিগুণও শূন্য। তাহলে মহাবিশ্ব তার পরা পদার্থ শক্তি এবং অপরা মহাক্ষীয় শক্তিকে দ্বিগুণ করতে পারে। সেক্ষেত্রেও শক্তির অক্ষয়ত্ব বিধি লভিঘত হবে না। মহাবিশ্বের সাধারণ সম্প্রসারণে এরকম ঘটনা ঘটে না। সেক্ষেত্রে মহাবিশ্ব বড় হওয়ার সঙ্গে বস্তু শক্তির ঘনত্ব হ্রাস পায়। তবে অতিন্টীতিরাপ সম্প্রসারণে (inflationary expansion) সেরকম হয়, তার কারণ, অতি শীতল অবস্থায় শক্তির ঘনত্ব থাকে অচর (constant) অঘট মহাবিশ্ব সম্প্রসারিত হয়। কিন্তু মহাবিশ্ব যখন সম্প্রসারিত হয় তখন পরা বস্তুপক্তি (positive matter energy) এবং অপরা মহাক্ষীয় শক্তি দুটিই দ্বিগুণ হয়, ফলে মোট শক্তি শূনাই থাকে। অতিন্টীতির দশায় (inflationary phase) মহাবিশ্বের আয়তন খুব বেশী বেড়ে যায়। সূতরাং কণিকা গঠন করার জন্য প্রাপ্তবা শক্তির পরিমাণও বিরাট বৃদ্ধি পায়। গুথ মন্তবা করেছেন: "লোকে বলে কোথাও মাগনা খেতে পাওয়া যায় না, কিন্তু মহাবিশ্ব চরম মাগনা খাওয়া।"

আন্ধকের দিনে মহাবিশ্ব আর অতিশ্টাতি রূপে (inflationary way) সম্প্রসারিত হচ্ছে না। সূতরাং এমন কিছু বাবস্থা থাকবার কথা যার জন্য কার্যকর বিরাট সৃষ্টিতন্ত্ব বিষয়ক প্রবক নিষ্ক্রিয় হবে এবং সম্প্রসারণের হার ত্বরিত না হয়ে মহাকর্ষের ফলে বর্তমান কালের মতো মন্থর হবে। ঠিক যেমন অতি শীতল জল শেষ পর্যন্ত জমে যায়, তেমনি অতিশ্টাতিরূপ সম্প্রসারণে আশা করা যেতে পারে শেষ পর্যন্ত বলগুলির প্রতিসামা (symmetry) তেঙে পড়বে। অভয় প্রতিসম অবস্থার বাড়তি শক্তি তাহলে মুক্ত হবে এবং মহাবিশ্বকে উত্তপ্ত করে এমন তাপমাত্রায় নিয়ে আসবে যা বলগুলির ভিতর প্রতিসামা রক্ষা করার উপযুক্ত ক্রান্তিক তাপমাত্রার ঠিক নিচে। উত্তপ্ত বৃহৎ বিশেষরণের প্রতিরূপের মতোই তখনও মহাবিশ্ব সম্প্রসারিত হতে থাকবে এবং শীতল হতে থাকবে, কিন্তু তখন মহাবিশ্ব কেন সঠিক ক্রান্তিক হারে সম্প্রসারিত হতে থবং কেন মহাবিশ্বর বিভিন্ন অঞ্চলের একই তাপমাত্রা তার একটি ব্যাখ্যা খুঁকে পাওয়া যাবে।

গ্রথের প্রাথমিক প্রস্তাবে দলা রূপাস্তর (phase transition) হঠাৎ ঘটে— অনেকটা অতি শীতল জলে স্ফটিক (crystal) দেখা দেওয়ার মতো। চিন্তনটি ছিল: ফুটস্ত জল দিয়ে পরিবৃত বাম্পের বৃত্বদের মতো ভন্ন প্রতিসম অবহার নতুন দলার বৃত্বদ পূরাতন দলার ভিতর গঠিত হয়। অনুমান করা হোত বৃত্বদগুলি সম্প্রসারিত হয়ে পরস্পর ফুস্ত হতে হতে পূরো মহাবিশ্বই নতুন দলা প্রাপ্ত হয়। মুলকিলটা হল: মহাবিশ্ব এত ক্রন্ত সম্প্রসারিত ইচ্ছিল যে বৃত্বদগুলি যদি আলোকের ক্রন্তিভেও বৃদ্ধি পায় তাহলেও তারা পরস্পর থেকে দূরে অপসরণ করতে থাকবে, সূতরাং পরস্পর যুক্ত হতে পারবে না। এ বিষয়ে আমি এবং অনা কয়েকজন দৃষ্টি আকর্ষণ করেছিলাম। মহাবিশ্ব থাকবে। মহাবিশ্বের এই রকম প্রতিরূপ আমরা মহাবিশ্বকে যে অবস্থায় দেখছি তার সঙ্গে মেলে না।

১৯৮১ সালের অক্টোবর মাসে আমি মস্কোতে একটি কণাবাদী মহাকর্ষ (quantum gravity) সম্পর্কীয় আলোচনা সভায় যোগ দিয়েছিলাম। সভা লেয় হওয়ার পর আমি স্টার্নবার্ল আর্ফ্রোনমিক্যাল ইলটিট্রটে একটি সেমিনার করি। অধিকাংশ লোকই আমার করা বুরতে পারত না, সেইজন্য এর আগে আমার হয়ে বস্তৃতা দেওয়ার জন্য অন্য একজনকৈ নিয়োগ করেছিলাম। কিছু এবার সেমিনারের জন্য তৈরী হওয়ার সময় ছিল না, সূতরাং করুতাটি আমি নিজেই দিয়েছিলাম। আমার একজন গ্রাজুয়েট ছাত্র আমার কথার পুনরুক্তি করেছিল। ব্যাপারটি ভালই হয়েছিল এবং এর ফলে আমার শ্রোভাদের সঙ্গে যোগাযোগও কেনী হয়েছে : শ্রোতাদের ভিতর মস্কোর লেবেডেড্ ইপটিটিউটের একজন তরুণ রুশ ছিলেন। তাঁর নাম আক্রে লিখে (Andrei Linde)। তিনি বলেছিলেন, বুতুদগুলি সংযুক্ত না হওয়ার অসুবিধা এড়ানো যায় যদি বুরুদগুলি এত বড় হয় যে মহাবিশ্বে আমাদের অঞ্চলটি সম্পূর্ণই একটি বৃদ্ধদের অন্তর্ভুক্ত হয়। ব্যাপারটা এরকম হতে হলে বৃদ্ধদটির ভিতর প্রতিসম অবস্থা থেকে ভগ্ন প্রতিসম অবস্থান (broken symmetry) উত্তরণ অবশাই খুব বীরে ধীরে হোত। পূর্ণান্ধ (Grand) ঐক্যবদ্ধ তত্ত্বগুলি অনুসারে ব্যাপারটা সত্যিই সম্ভব। স্বীরে প্রতিসম অবস্থা ভন্ন হওয়া বিষয়ক লিপ্রের ধারণাটি খুবই ভাল। কিছা পরে আমার মনে হল— সেক্ষেত্রে বুভুনগুলির যে আয়তন হতে হোত সেটা ওদানীস্থন মহাবিশ্বের আয়তনের চাইতে কেশী। আমি দেখিয়েছিলাম শুধুমাত্র বৃদ্ধুদগুলির ভিতরে না হয়ে একসঙ্গে সর্বত্রই প্রতিসম অবস্থা তেন্তে পড়তে পারে-তাহলে তার ফল হবে আমরা যে রকম দেখছি সেই রকম একটি সমরূপ (uniform) মহাবিশ্ব। এই চিস্তাধারার ফলে আমি খুব উত্তেজিত হয়ে পড়ি এবং আয়ান মস্ (Ian Moss) নামে আমার এক ছাত্রের সঙ্গে এ বিষয়ে আলোচনা করি। প্রকাশের উপযুক্ত কিনা জানবার জন্য লিণ্ডের প্রবন্ধটি একটি বৈজ্ঞানিক পত্রিকা আমার কাছে পাঠায়। কিন্ত লিণ্ডে আমার বন্ধু, সেইজন্য আমি একটু বিব্রত বোধ করি। আমি উত্তর দিই—ধীর গতিতে প্রতিসম অবস্থা ভয় হওয়া বিষয়ক চিন্তাধারা মূলত পুবই ভাল, কিন্তু একটিই খুঁত থেকে যায়— সেটা হল বুছুদগুলিকে হতে হয় মহাবিশ্বের চাইতে বড়। জামি সুপারিশ করলাম গবেষণাপত্রটি প্রকাশ করা হোক, কারণ ওটা সংশোধন করতে লিণ্ডের কয়েক মাস লেগে যাবে। পাশ্চাতা দেশে যাই আসুক না কেন, তাকে সোভিয়েৎ সেশর পেরোতে হবে। বৈজ্ঞানিক গবেষণাপদ্রের ব্যাপারে তাঁরা খুব কুশলী কিম্বা চটপটে নন। ভার বদলে আমি আয়ান মসের (Ian Moss) সঙ্গে একটি ছোট প্রবন্ধ একই পত্রিকায় লিখলাম। সে প্রবন্ধে আমি বুদুদ বিষয়ক সমস্যার দিকে দৃষ্টি আর্কমণ করি এবং কি করে সে সমস্যার সমাধান করা ঘায় সেটাও দেখাই।

মন্তো খেকে যেদিন ফিরি সেদিনই আমি ফিলাডেলফিয়া রওনা হই। সেখানে ফ্রাছান্সন ইলটিট্টাট থেকে আমার একটি পদক পাওয়ার কথা ছিল। আমার সেক্রেটারী ছুডি ফেলা (Judy Fella) প্রচারের স্বার্থে কনকর্ডে তাঁর এবং আমার জন্য বিনামূল্যে দুটি আসন সংগ্রহ করার জন্য তাঁর অসামান্য মোহিনীশক্তি বাবহার করেন। কিন্তু বিমানবন্দরে যাওয়ার পথে প্রচণ্ড বৃষ্টিতে আমি আটকে যাই, ফলে প্লেনটা আর ধরতে পারিনি। তবুও শেষ পর্যন্ত আমি ফিলাডেলফিয়াতে পৌঁছাই এবং পদক গ্রহণ করি। তখন আমাকে ফিলাডেলফিয়ার ডেব্রেল বিশ্ববিদ্যালয়ে, মস্কোতে যেমন দিয়েছিলাম, সেই রকম অতি স্ফীতিমান মহাবিশ্ব (inflationary universe) সম্পর্কে একটি বক্তৃতা দিতে বলা হয়।

কমেক মাস পরে পেনসিলভেনিয়া বিশ্ববিদ্যালয়ের পল স্টাইনহার্ড (Paul Steinhardt)
এবং আনিড্রিয়াস আলরেখট্ (Andreas Albrecht) স্থাধীনভাবে লিভের মতোই একটি
ধারণা উপস্থিত করেন। এখন তাঁদের দুজনকে এবং লিভেকে যুক্তভাবে প্রতিসম অবহা ধীরগতিতে
ভয় হওয়ার চিস্তনের ভিত্তিতে গঠিত "নবা ক্ষীতিমান প্রতিরূপ" গঠনের কৃতিত্ব দেওয়া হয়।
(প্রাচীন অতিক্ষীতিমান প্রতিরূপ ছিল গুণের প্রতিসামা ভয় হওয়া এবং বুদুদ সৃষ্টি হওয়া
বিষয়ে প্রথম উপস্থাপিত ধারণা)।

নব্য অতিক্রীতিয়ান প্রতিরূপ মহাবিশ্বের বর্তমান অবস্থা হওয়ার কারণ ব্যাখ্যা করার একটি উত্তম প্রচেষ্টা। কিছু আমি এবং আর কয়েকজন দেখিয়েছিলাম : অন্তত পক্ষে প্রতিরূপের যে প্রাথমিক রূপ ছিল সে রূপ পর্যবেক্ষণ করা মাইক্রোভরক পশ্চাৎপট বিকিরণের তাপমাত্রার হ্রাসবৃদ্ধির তুলনায় অনেক বেশী হ্রাসবৃদ্ধি ভবিষ্যদ্বাণী করেছিল। অতি আদিম মহাবিশ্বে যে রকম প্রয়োজন হতে পারত সে রকম কোনো দশা রূপান্তর (phase transition) হওয়া সম্ভব ছিল কিনা সে সম্পর্কে পরবর্তী অনেক গবেষণাতেই সন্দেহ প্রকাশ পায়। আয়ার ব্যক্তিগত মতে, নব্য অতিক্ষীতিমান প্রতিরূপের কৈজ্ঞানিক তত্ত্ব হিসাবে মৃত্যু হয়েছে। তবে অনেকেই এর মৃত্যু সংবাদ রাখেন না। অনেকেই এখনো এমনভাবে গবেষণাপত্র লিখে চলেছেন যেন এ তব্ব এখনও জীবিত। ১৯৮৩ সালে লিভে (Linde) শৃঙ্খলাহীন অভিশ্বীতিমান প্রতিরূপ (chaotic inflationary model) নামে আরো ভাল একটি প্রতিরূপ উপস্থিত করেন। এ প্রতিরূপে কোনো দশা রূপান্তর (phase transition) কিম্বা অতি শীতল হওয়া (super cooling) নেই। তার বদলে রয়েছে একটি O চক্রল ক্ষেত্র (spin O field) , সে ক্ষেত্রে কোয়ান্টাম হ্রাসবৃদ্ধির দক্ষন আদিম মহাবিশ্বের কোনো কোনো অঞ্চলে মান (value) হোত বৃহৎ। এই সমস্ত অঞ্চলের ক্ষেত্রের শক্তি একটি মহাজাগতিক প্রবকের মতো আচরণ করবে। এর একটি বিকর্ষণকারী মহাকর্মীয় অভিক্রিয়া থাকবে। তার ফলে ঐ অঞ্চলগুলি অতি দ্রুত শ্রীত হবে। প্রসারণের সঙ্গে সঙ্গে তাদের ক্ষেত্রের শক্তিও বীরে ধীরে কমবে। শেষ পর্যন্ত অতিক্রত প্রসারণ (inflationary expansion) হ্রাস পেয়ে উত্তপ্ত বৃহৎ বিস্ফোরণের প্রতিরূপের মতো প্রসারণে রূপান্তরিত হবে। এই অঞ্চলগুলির একটি হবে আমরা যাকে পর্যবেক্ষণযোগ্য মহাবিশ্বরূপে দেখি সেই অঞ্চল। এই প্রতিরূপের আগেকার ফ্রন্ড ক্ষীতিমান প্রতিরূপের সমস্ত সুবিধাই রয়েছে কিন্তু এটি সন্দেহজনক দশা রূপাস্তরের (dubious phase transition) উপর নির্ভর করে না। তাছাড়া এ প্রতিরূপে পর্যবেক্ষণের সঙ্গে সঞ্চতিপূর্ণ মাইক্রোভরক্ষের পশ্চাৎপটের তাপমাত্রার হ্রাসবৃদ্ধির একটি যুক্তিসঙ্গত পরিমাণ পাওয়া যায়।

অতিক্ষীতিমান প্রতিরূপের উপর এই গবেষণা দেখিয়েছে মহাবিশ্বের বর্তমান অবস্থা বহুসংখ্যক পৃথক পৃথক প্রাথমিক আকৃতি (configuration) থেকে উদ্ভূত হতে পারে। এ তথা গুরুত্বপূর্ণ, কারণ এ থেকে বোঝা যায় মহাবিশ্বের যে অংশে আমরা বাস করি সে অংশের প্রাথমিক অবস্থা খুব সয়ত্ত্বে নির্বাচনের প্রয়োজন ছিল না। সূতরাং আমরা যদি ইচ্ছা

করি তাহলে মহাবিশ্বকে এখন যেরকম দেখার সোটা ব্যাখ্যা করার জনা দুর্বল নরত্বীয় নীতি (weak anthropic principle) ব্যবহার করতে পারি। তবে এরকম কখনো হতে পারে না যে, যে কোনো প্রাথমিক আকৃতিই (configuration) আমরা যে রকম মহাবিশ্ব দেখছি তার পথিকৎ হতে পারত। বর্তমান কালের মহাবিশ্বের অত্যন্ত অন্যরক্ষ অবস্থা (ধরুন-বিচ্ছিন্ন অতাস্ত শিশুকৃতি এবং অসম— very lumpy and irregular) বিচার করে এটা দেখানো যেতে পারে। বৈজ্ঞানিক বিধিগুলির সাহায্যে কালে মহাবিশ্বের অতীতমুখী বিবর্তন বিচার করে পূর্বতন যুগের আকৃতি নির্ধারণ করা যায়। চিরায়ত ব্যাপক অপেক্ষবাদের **অনন্যতা** উপপাদ্য (singularity theorem) অনুসাবে এসত্ত্বেও একটি বৃহৎ বিস্ফোরণের অনন্যভা থাকতে হোত। আপনি যদি বিজ্ঞানের বিধি অনুসারে এই রকম একটি মহাবিশ্বের ভবিষাৎকালের অভিমুখে বিবৰ্তন করান তাহলে যে বিচ্ছিন্ন শিশুকৃতি অসম মহাবিশ্ব নিয়ে আপনি শুকু করেছিলেন সেখানেই এসে পৌঁছে যাবেন। সূতরাং এমন প্রাথমিক আকৃতি নি**শ্চয়ই থাকতে** পারত যা থেকে আমরা আৰু যে মহাবিশ্ব দেখছি সে রকম মহাকি: উৎপক্স হোত না। সুতরাং প্রাথমিক আকৃতি কেন এরকম হয়নি, যার ফলে আমরা যা পর্যবেক্ষণ করছি তার চাইতে অত্যন্ত পৃথক কিছু সৃষ্টি হতে পারেনি, সে প্রশ্নের উত্তর অতিস্ফীতিমান প্রতিরূপও দিতে পারে না। তাহলে কি ব্যাখার জন্য আমাদের নরতীয় নীতির আশ্রয় নিতে হবে ? এটা কি তবে ছিল সৌভাগ্যজনক দৈব ঘটনা ? এ যুক্তি মনে হয় নেহাংই হতাশার-মহাবিশ্বের মলগত বিন্যাস (underlying order) বোঝার সমস্ত আশা শেষ হয়ে যাওয়ার।

মহাবিশ্বের কিভাবে শুক হওয়া উচিৎ ছিল সে সম্পর্কে ভবিষাদ্বাণী করতে হলে এমন বৈজ্ঞানিক বিধি প্রয়োজন, যে বিধি কালের প্রারম্ভে সতা ছিল। বাাপক অপেক্ষবাদের চিরায়ত তত্ত্ব যদি সতা হয় তাহলে আমার এবং রজার পেনরোজের প্রমাণিত অননাতা উপপাদা থেকে দেখা যায় কালের প্রারম্ভ এমন একটি বিন্দু, যে বিন্দুতে ঘনত্ত্ব ছিল অসীম এবং স্থান-কালের বক্রতাও ছিল অসীম। সে বিন্দুতে বিজ্ঞানের জানিত সমস্ত বিধিই ভেঙে পড়বে। অনুমান করা যেতে পাবে অননাতার সময় নতুন বিধি ছিল কিছু যে সমস্ত বিন্দুর আচরণ এমন মন্দ যে সেই সমস্ত বিন্দুর বিধি গঠন করা খুবই কঠিন এবং সে বিধিগুলির কিরকম হওয়া উচিৎ সে সম্পর্কে কোনো ইঙ্গিত আমরা পর্যবেক্ষণ থেকেও গাব না। কিছু আসলে অননাতা উপপাদাগুলির ইঙ্গিত হল মহাকর্ষীয় ক্ষেত্র এতই শক্তিশালী হয় যে কোয়ান্টাম মহাক্ষীয় অভিক্রিয়াগুলি গুরুত্বলাভ করে: চিরায়ত তত্ত্ব আর মহাবিশ্বের বিবরণের পক্ষে উত্তম নয়। সূত্রাং মহাবিশ্বের অতি আদিম অবস্থা নিয়ে আলোচনা করতে হলে কণাবদী মহাক্ষীয় তত্ত্ব বাবহার করতে হবে। আমরা দেখতে পাব কণাবদী তত্ত্বে বিজ্ঞানের সাধারণ তত্ত্বগুলি সর্ব্যর্থযোজা হওয়া সন্তব্ব অর্থাৎ প্রযোজা হওয়া সন্তব্য কালের প্রারম্ভেও। অননাতার জন্য নতুন বিধি প্রণয়ন প্রযোজন হয় না কারণ কোয়ান্টাম তত্ত্বে অননাতার কোনো প্রযোজন নেই।

কণাবাদী বলবিদ্যা (quantum mechanics) এবং মহাকর্যকে যুক্ত করে, সম্পূর্ণ এবং সামঞ্জস্যপূর্ণ এরকম তত্ত্ব এখন পর্যন্ত আমাদের নেই। কিন্তু এই রকম একটি ঐকাবদ্ধ তন্ত্বের অবয়বে কি থাকা উচিৎ তার কিছু কিছু সম্পর্কে আমরা মোটামুটি নিশ্চিত। একটি

ছল - ফেনম্যানের (Feynman) প্রস্তাবকৈ এ তত্ত্বের অন্তর্ভুক্ত করতে হবে। এ প্রস্তাব অনুসারে কোয়ান্টাম তত্ত্বকে বহু ইতিহাসের যোগফলের বান্নিখিতে গঠন করতে হবে। চিরায়ত তত্ত্ব অনুসারে একটি কণিকার একটিই ইতিহাস থাকে কিছু ফেনম্যানের দৃষ্টিভঞ্জি অনুসারে কণিকার ইতিহাস একটি মাত্র নয়। তার বদলে অনুমান করা হয় কণিকাটি ছান-কালের সম্ভাব্য সমস্ত পথই অনুসরণ করে এবং এর প্রতিটি ইতিহাসের সঙ্গেই লড়িত রয়েছে দৃটি সংখ্যা। একটি প্রকাশ করে তরঙ্গের আয়তন (size), অনাটি প্রকাশ করে চক্রের ভিতরে (in the cycle) তার অবস্থান (এর দশা– its phase)। ধরুন কোনো বিশেষ বিন্দুর ভিতর দিয়ে কণিকাটি গমন করার সম্ভাব্যতা, এই সম্ভাব্যতা পাওয়া যায় ঐ কিনুর ভিতর দিয়ে গমনকারী সম্ভাব্য সমস্ত ইতিহাসের সঙ্গে সংশ্লিষ্ট তরঙ্গুলির খোগফল দিয়ে। কি**ছ এই অভগুলি করতে গেলে** প্রযুক্তির দিক থেকে কঠিন অসুবিধায় পড়তে হয়। অসুবিধা এড়ানোর একমাত্র পথ হল নিম্নলিখিত অন্তত ব্যবস্থাপত্র: সেই সমস্ত কণিকা ইতিহাসের সঙ্গে সংশ্লিষ্ট তরক্ষ যোগফল নিতে হবে যেগুলির অস্তিত্ব আয়ার আগনার পরিচিত "বাস্তব" (real) কালে নয়: সেগুলির অস্তিত্ব, যাকে বলা হয় কাল্পনিক (imaginary) কাল, সেই কালে। কাল্পনিক কাল কথাটি বৈজ্ঞানিক কল্পকাহিনীর মতো শোনাতে পারে, কিছ আসলে এটি একটি সুসংজ্ঞিত গাণিতিক চিন্তন। আমরা যদি একটি সাধারণ সংখ্যা (বাস্তব) নিয়ে সংখ্যাটিকে সেই সংখ্যার সঙ্গেই গুণ করি তাহলে গুণফল হবে একটি পরা সংখ্যা (positive number) ৷ (উদাহরণ : দুই দুগুণে চার কিন্তু -২ (-দুই) কে -২ (-দুই) দিয়ে গুণ করলেও চার হয়)। তবে কতকগুলি বিশেষ সংখা আছে (সেগুলিকে বলা হয় কাল্পনিক) সেগুলিকে সেই সংখ্যা দিয়ে গুণ দিলে অপরা (negative) সংখ্যা হয়। (একটির নাম i, সেটিকে ঐ সংখ্যা দিয়ে গুণ করলে গুণফল হয়—১. ২াকে ২া দিয়ে গুণ করলে গুণফল হয় ৪. এইরকম)। ফেনমানের ইতিহাসের যোগফলের প্রযুক্তিভিত্তিক অসুবিধা এড়ানোর জনা কাল্পনিক কাল বাবহার করতে হবে অর্থাৎ কাল বাস্তব সংখ্যা দিয়ে না মেশে মাণতে হবে কাল্পনিক সংখ্যা দিয়েই। স্থান-কালের উপর এর ফ্রিয়া আকর্ষণীয় : স্থান এবং কালের ভিতর পার্থক্য সম্পূর্ণ অদৃশ্য হয়ে যায়। যে স্থান-কান্সের কালিক স্থানাত্ত (time coordinate) কাল্পনিক, তাকে বলা হয় ইউক্লিডীয়। দ্বিমাত্রিক তলের জামিতির প্রতিষ্ঠাতা গ্রীক ইউক্লিডের নামে এই নাম। এখন আমরা যাকে ইউক্লিডীয় স্থান-কাল বলি ভার সঙ্গে এর খুবই মিল, শুধুমাত্র দুই মাত্রার বদলে এতে রয়েছে চার মাত্রা (four dimensions)। ইউক্লিডীয় স্থান-কালে কালের অভিমুখ এবং স্থানের অভিমুখগুলির ভিতরে কোনো পার্থকা নেই। অন্য দিকে বাস্তব ছান-কালে যেখানে ঘটনাগুলি কালিক ছানাছের সাধারণ বাস্তব মান (real values) দিয়ে চিহ্নিত, সেখানে পার্থকা নির্বারণ করা সহজ-সমস্ত বিন্দুতেই সময়ের অভিমুখ থাকবে আলোক শঙ্কুর (light cone) ভিতরে এবং স্থানের অভিমুখগুলি থাকবে তার বাইরে। সে যাই হোক, দৈনন্দিন কণাবাদী বলবিদ্যা অনুসারে এই পর্যন্ত বলা যেতে পারে যে আমাদের কাল্পনিক সময় এবং ইউক্লিডীয় স্থান-কাল ধ্যবহার বাস্তব স্থান-কাল সম্পর্কে প্রব্লের উত্তর দেওয়ার একটি গাণিতিক কৌশল (কিম্বা চালাকিtrick) মাত্র ৷

আমাদের বিশ্বাস চূড়ান্ত তত্ত্বের ভিতীয় একটি অংশ অবশাই হবে আইনস্টান্টনের এই চিন্তাধারা যে বন্ধিম স্থান-কাল মহাকর্মীয় ক্ষেত্রের প্রতিনিধি: বন্ধিম স্থানে কণাগুলি অনুসরণ করে অন্ধ্রপথের নিকটতম একটা কিছু কিন্তু থেহেতু স্থান-কাল সমতল (flat) নয়, সেইজনা মহাকর্মীয় ক্ষেত্রের জনাই যেন তাদের পথগুলিকে বন্ধিম দেখায়। মহাকর্ম সম্পর্কে আইনস্টান্টনের দৃষ্টিভঙ্গির উপর ফেনম্যানের ইতিহাসগুলির যোগফল প্রয়োগ করলে কণিকার ইতিহাস হয়ে দাঁড়ায় সম্পূর্ণ বন্ধিম খান-কালের সদৃশ (analogue)— সেটাই সমগ্র মহাবিশ্বের ইতিহাসের প্রতিরূপ। কার্যক্রের ইতিহাসগুলিকে যোগ করার প্রযুক্তিগত অসুবিধা এড়ানোর জনা এই বন্ধিম স্থান-কালকে ইউক্লিডীয় বলে মেনে নেওয়া আবন্ধিক। অর্থাৎ কাল কাল্পনিক এবং ছানের অভিমূখের সঙ্গে তার কোনো পার্যক্য করা সন্তব নয়। একটি বিশেষ ধর্ম সমন্তিত (যথা— প্রতিটি বিন্দৃতে এবং প্রতিটি অভিমূখে একই কলম দেখাবে) বান্তব শ্বান-কাল পাওয়ার সন্তাবনা খুঁজতে গেলে যাদের এই রকম ধর্ম আছে সেই রকম ইতিহাসগুলির সঙ্গে সংযুক্ত সমস্ত তর্মের যোগফল ধার করতে হবে।

বাাপক অপেক্ষনাদের চিরায়ত তত্ত্বে সম্ভাব্য নানা বিভিন্ন বঞ্চিম স্থান-কাল রয়েছে, এগুলির প্রতিটি, মহাবিশ্বের সম্ভাব্য বিভিন্ন প্রাথমিক অবস্থার অনুরূপ। মহাবিশ্বের প্রাথমিক অবস্থার অনুরূপ। মহাবিশ্বের প্রাথমিক অবস্থা যদি আমাদের জানা থাকত তাহলে তার সম্পূর্ণ ইতিহাসটিই আমরা জানাভাম। অনুরূপ তাবে মহাকর্বের কোয়ান্টাম তত্ত্বে মহাবিশ্বের সম্ভাব্য বিভিন্ন কোয়ান্টাম অবস্থা রয়েছে। ভালাভা আমাদের যদি জানা থাকত ইতিহাসগুলির ভিত্তের ইউক্লিডীয় বঙ্কিম স্থান-কালের আদিম মুগে আচরণ কি ছিল তাহলে আমরা মহাবিশ্বের কোয়ান্টাম অবস্থা জানতে পারভাম।

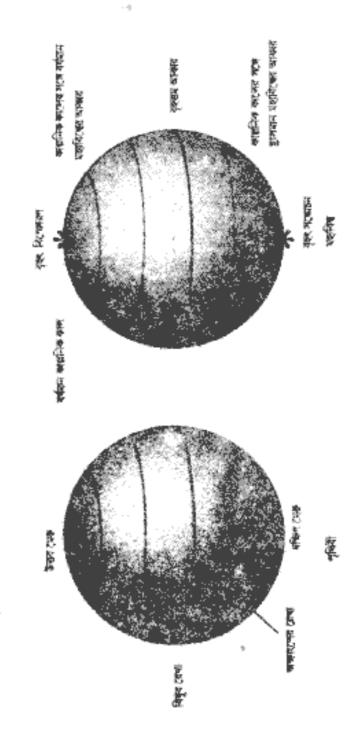
চিরায়ত মহাক্ষীয় তত্ত্বের ভিত্তি বাস্তব স্থান-কাল, সে তত্ত্বে মহাবিশ্বের আচরশের দুটি থাত্র সন্থাবা পথ রয়েছে : হয় এর অস্তিত্ব রয়েছে অনন্তকাল থেকে নয়তো অতীতের কোনো সীমিতকালে এক অননাতা থেকে এর শুক । অন্যদিকে মহাকর্ষের কোয়ান্টাম তত্ত্বে একটি তৃতিয় সন্থাবনা দেখা দেয় । যে ইউক্লিডীয় স্থান-কাল ব্যবহার করা হচ্ছে সে স্থান-কালে সময়ের অভিমুখ এবং কালের অভিমুখ একই, সূত্রাং স্থান-কালের বিস্তার সীমিত হলেও একটি অননাতা দিয়ে তার সীমানা কিল্পা কিনারা না হতে পারে । স্থান-কাল হবে ধরাপৃষ্টের মতো, শুধুমাত্র দৃটি মাত্রা (dimension) কেল্পী থাকবে । ধরাপৃষ্ঠ বিস্তারের দিক দিয়ে সীমিত কিন্তু তার কোনো সীমানা কিল্পা কিনারা নেই । আপনি যদি জাহাজে করে স্থান্তের ভিতরে চুকে পড়েন তাহলে আপনি পৃথিবীয় কিনারা দিয়ে পড়ে যাবেন না কিল্পা একটি অননাতায় চুকে পড়বেন না (আমি সারা পৃথিবী ঘূরেছি, সেইজনা আমি জ্বানি !)

ইউক্লিডীয় স্থান-কাল যদি কাল্পনিক সীমাহীন অতীতে বিস্তৃত হয় কিল্পা যদি কাল্পনিক কালের একটি অননাতায় শুরু হয়, তাহলেও আমাদের চিরায়ত তত্ত্বের মত্যো একই সমস্যা থেকে যায় অর্থাৎ মহাবিশ্বের প্রাথমিক অবস্থা নির্দিষ্টরূপে নির্দেশ (specifying) করা: ঈশ্বর হয়তো জানেন মহাবিশ্ব কিভাবে শুরু হয়েছিল কিন্তু মহাবিশ্ব একভাবে শুরু না হয়ে কেন অনাভাবে শুরু ইয়েছিল সেটা বিচার করার বিশেষ কোনো কারণ আমরা দেখাতে পারব না। অনানিকে মহাকর্ষের কোরান্টাম তত্ত্ব একটি নতুন সম্ভাবনা খুলে দিয়েছে। এ সম্ভাবনায় বান-কালের কোনো সীমানা থাকবে না, সূতরাং সীমানার আচরণ নির্দিষ্ট করারও কোনো
প্রয়োজন থাকবে না। সে ক্ষেত্রে এমন কোনো অননাতা থাকবে না যেখানে বিজ্ঞানের বিধি
ভেছে পড়েছিল এবং ছান-কালের এমন কোনো কিনারা (edge) থাকবে না যেখানে
ছান-কালের সীমানা ছির করার জন্য ইশ্বর কিছা অনা কোনো বিধির ছারছ হতে হবে।
কলা যেতে পারে "মহাবিশ্বের সীমান্তের অবস্থা হল কোনো সীমান্তের অনন্তিশ্ব।" মহাবিশ্ব
ছবে সম্পূর্ণ আত্মঅন্তর্ভুক্ত (selfcontained) এবং বাইরের কিছু দিয়ে প্রভাবিত নয়। এটা
সৃষ্টও ছবে না ধ্বংসও হবে না। এটা শুধুমাত্র পাকবে।

ভাটিকানের যে কনফারেশের কথা এর আগে উল্লেখ করেছি সেই কনফারেশে আমি প্রস্তাব উত্থাপন করি যে, হয়তো স্থান আর কাল মিলিয়ে এমন একটি তল (surface) গঠন করেছে যেটা আয়তনে সীমিত কিন্তু তার কোনো সীমানা কিন্তা কিনারা নেই। আমার গবেষণাপত্রটি ছিল একটু গালিতিক, সেইজনা মহাবিশ্ব সৃষ্টির ব্যাপারে ঈশ্বরের ভূমিকা সম্পর্কে তার ফলপ্রতি সৈ সময় সাধারণ ভাবে বোধগামা হয় নি (আমার পক্ষে ভালই ইয়েছিল)। ভাটিকাান কনফারেশের সময় মহাবিশ্ব সম্পর্কে ভবিষাদ্বাদী করার জনা ''সীমানাছীনতার'' চিন্তাধারা কি করে ব্যবহার করা যায় সেটা আমার জানা ছিল না। যাই হোক, পরবর্তী প্রীক্ষকালটা আমি কটাই ক্যালিফোর্নিয়া বিশ্ববিদ্যালয়ের সাক্ষা বারবারায় (Santa Barbara)। সেধানে আমি এবং জিম হার্টল (Jim Hartle) নামে আমার একজন বন্ধু এবং সহকর্মী একসক্ষে গবেষণা করি। গবেষণার বিষয় ছিল: যদি স্থান-কালের সীমানা না থাকে তারুলে মহাবিশের কি কি সর্ত পালন করতে হবে? কেন্ত্রিজে ফেরার পর জুলিয়ান লুট্রেল (Julian Luttrei) এবং জ্যানাখান হ্যালিওয়াল (Jonathan Halliwell) নামে আমার দুজন গবেষণাকারী ছাত্রের সঙ্গে আমি এই গবেষণা চালিয়ে যাই।

আমি জারের সঙ্গে বলতে চাই হান এবং কাল সীমিত কিছ তার কোনো সীমানা নেই এই ধারণা একটি প্রস্তাব মাত্র: অনা কোনো নীতি পেকে অবরেছী শছতিতে এ নিজান্ত গ্রহণ করা যায় না! যে কোনো বৈজ্ঞানিক তত্ত্বের মতোই প্রথমে এ প্রস্তাব হয়তো করা হয়েছিল সৌন্দর্য কিছা অধিনিদামূলক কারণে কিছ পর্যক্ষেপের সঙ্গে সঙ্গতিপূর্ণ ভবিষাছাণী করতে পারে কি না সেটাই তত্ত্বের আসল পরীক্ষা। তবে কোয়ান্টাম মহাকর্ষের ক্ষেত্রের দুটি জারণে এটা নির্দায় করা কঠিন। প্রথমত (এটা ব্যাখ্যা করা হবে পরের অধ্যায়ে) কোন তত্ত্ব জাবালী কাবিলা এবং ব্যাপক অপোক্ষান সাফল্যের সঙ্গে সমন্ত্রয় করে, সে বিষয়ে আমরা এজনক নিন্দিত নই। কিছু সেরকম একটি তত্ত্বের অব্যাব কি রকম হতেই হবে সৈ সম্পর্কে আমরা অনেকটাই জানি। ছিতীয়ত সমগ্র মছাবিশ্বের বিবরণ পূখানুপুঞ্জালে দিতে পারে এরকম প্রতিজ্ঞপ আমানের পক্ষে গাণিতিক ভাবে এমন জটিল হবে যে আমরা নির্ভুল তবিষ্যদ্বাদী গানা করতে পারব না। সূত্রাৎ আমানের করতে হবে সরলীকরণ করতে পারে এরকম আনুমান এবং আসরতা (approximation)। কিয় তবুও ভবিষ্যদ্বাদী বার করা হবে অতীব দুক্রয়।

ইতিহাসপ্তলির যোগফলের প্রতিটি ইতিহাস শুধু স্থান-কালের বিবরণাই দেবে না--


বিবরণ দেবে তার অন্তর্ভুক্ত প্রতিটি জিনিষেরই। তার ভিতরে মানুষের মতে জটিন জীবিভ[া] লালি লালি ত ধাকবে অর্থাৎ এমন জীব থারা মহাবিশ্বের ইতিহাস পর্যকেকণ করতে পারে। এটা নরত্বীয় নীতির সপক্ষে আর একটি যুক্তি হতে পারে। কারণ যদি সবকটি ইতিহাসই সম্ভব হয় তাহলে যতক্ষণ পর্যন্ত ইতিহাসগুলির একটিতে আমাদের অস্তিত্ব রয়েছে— ততক্ষণ পর্যন্ত মহাবিশ্ব যে অবস্থায় রয়েছে সে অবস্থা ব্যাখ্যা করার জন্য আমরা নরতীয় নীতি ব্যবহার করতে পারি। যে ইতিহাসগুলিতে আমাদের অস্তিত্ব নেই সেগুলিতে ঠিক কি অর্থ আরোপ করা যেতে পারে সেটা স্পষ্ট নর। যদি ইতিহাসগুলির বোলফলের সাহায্যে দেখানো যেত যে আমাদের মহাবিশ শুধুমাত্র সম্ভাবা ইতিহাসগুলির একটি নয়, এটা সবচাইতে সন্ভাবাগুলির একটি, তাহলে মহাকর্ষের কণাবদি তত্ত্ব সম্পর্কে এই দৃষ্টিভঙ্গি আরও অনেক বেশী সভ্যোষজনক হোত। এই কাজ করার জন্য সন্তাব্য সমস্ত সীমানাবিহীন ইউক্লিডীয় স্থান-কালের ইতিহাসের যোগাঞ্চল বার করতে চবে।

585

সীমানাহীনতার প্রস্তাব থেকে জানা যায় মহাবিশ্বের সম্ভাব্য প্রতিটি ইতিহাস অনুসরণ করার সম্ভাবনা অতি সামানা, তবে ইতিহাসগুলির একটি বিশেষ গোষ্ঠী আছে যার সম্ভাবনা অনাগুলির তুলনায় অনেক বেশী। এই ইতিহাসগুলিকে অনেকটা কল্পনা করা যায় ভূপুঠের মতো-- উত্তর মেরু থেকে দূরত্ব কাল্পনিক কালের প্রতিরূপ এবং উত্তর মেরু থেকে স্থির দূরত্ব বিশিষ্ট একটি বৃত্তের আয়তন মহাবিশ্বের স্থানিক আয়তনের প্রতিরূপ। উত্তর মেকতে একক একটি বিন্দুরূপে মহাবিশ্বের আরম্ভ। সেখান থেকে যত দক্ষিণে যাওয়া যাবে উত্তর মেরু খেকে ছির দূরত্বে অক্ষাংশের (latitude) বৃত্তগুলি ততই বৃহত্তর হবে। এটা হবে কাল্পনিক সময়ের সঙ্গে মহাবিশ্বের সম্প্রসারণের অনুরূপ (চিত্র—৮.১)। বিষুবরেখায় মহাবিশ্বের আয়তন হবে বৃহত্তম এবং কাপ্সনিক সময় বৃদ্ধির সঙ্গে সঙ্গুচিত হতে হতে দক্ষিণ মেরুতে এসে একটি মাত্র কিবুতে পরিণত হবে। উত্তর এবং দক্ষিণ মেরুতে মহাবিশ্বের আয়তন শূন্য হলেও এই বিন্দুগুলি অনন্য (singularities) হোত না। পৃথিবীর উত্তর এবং দক্ষিণ যেক হতটা অনন্য তার চাইতে বেশী কিছু নয়। উত্তর এবং দক্ষিণ মেরু সাপেক্ষ বৈজ্ঞানিক বিধিগুলি যেমন সতা, ওপ্তলি সাপেক্ষ বৈজ্ঞানিক বিধিগুলি তেমনি সতা হবে।

কিছ বাস্তব কালে মহাবিশ্বের ইতিহাস বেশ অন্যারক্ষম দেখাবে। এক হাজার কিছা দু'হাজার কোটি বছর আগে এর আয়তন হত সর্বনিম্ন। সেটি হোত কাল্পনিক কালের ইতিহাসের সর্বোচ্চ ব্যাসার্থের সমান। পরবর্তী বাস্তব কালে মহাবিশ্ব লিঙে (Linde) প্রস্তাবিত শৃত্বলাহীন অতি ক্ষীতিমান প্রতিরূপের অনুরূপ সম্প্রসারিত হবে (কিন্তু মহাবিশ্ব কোনোক্রমে সঠিক অবস্থায় পৃষ্ট হয়েছিল এরকম অনুমান করার প্রয়োজন এক্ষেত্রে হবে না)। মহাবিশ্ব সম্প্রসারিত হতে হতে বিরাট আয়তন প্রাপ্ত হবে এবং ভারশর আবার চুপ্সে যাবে। সেটি দেখাবে অনেকটা বাস্তব কালের অনন্যতার মতো। সূতরাং এক অর্থে, কৃষ্ণগহুর থেকে দূরে থাকলেও আমাদের সবারই মৃত্যু অবধারিত। মহাবিশ্ব শুধুমাত্র যদি কাশ্পনিক কালের বাশ্বিধিতে কল্পিত হয় তাহলেই কোনো অনন্যতা থাকবে না।

মহাবিশ্ব যদি বাস্তবিকই এরকম একটি কণাবদি৷ অবস্থায় থাকে তাহলে কাশ্বনিক কালে

চিত্র - ৮.১

মহাবিশ্বের ইতিহাসে কোনো অনন্যতা থাকবে না। সূতরাং মনে হতে পারে আমার আধুনিকর্ত্র গবেষণা আমার অনন্যতা বিষয়ে পূর্বতন গবেষণাগুলিকে সম্পূর্ণ বাতিক করে নিয়েছে। কিন্তু অনন্যতা উপপানগুলির বাস্তব গুরুত্ব ছিল: তারা দেখিয়েছে মহাক্ষীয় ক্ষেত্রগুলি অবশাই এত শক্তিশালী হোত যে কণাবাদী মহাক্ষীয় অভিক্রিয়াকে(quantum gravitation) effect) অগ্রাহ্য করা যেত না। এরকম ইঙ্গিত আগে দেওয়া হয়েছে। কান্ধনিক কালে মহাবিশ্ব সীমানাহীন বিশ্বা অনন্যতাহীন হলেও সীমিত হতে পারে এই ধারণার পথিকুৎ পূর্বোক্ত চিন্তাধারা। যে বাস্তব কালে আমরা বাস করি সেই বাস্তব কালে ফিরে এলে কিন্তু তখনও অনন্যতার অভিত্র থাকবৈ বলে মনে হয়। যে মহাকাশচারী বেচারা কৃষ্ণগহরে পড়বে তখনও তার চটচটে (sticky) মৃত্যুই হবে। শুধুমাত্র কান্ধনিক কালে বাস করলেই তার কোনো অনন্যতার সঙ্গে দেখা হবে না।

এ থেকে মনে হতে পারে তথাকথিত কাল্পনিক কালই আসলে বাস্তব কাল আর
যাকে আমরা বাস্তব কাল বলি সেটা আমাদের কল্পনার উদ্ভাবন। বাস্তব কালে অন্যন্যতাগুলির
তিতরে মহাবিশ্বের শুকু আর শেব রয়েছে। এই অননাতাগুলিই হান-কালের সীমানা এবং
এখানে বিজ্ঞানের বিধিপ্তলি ভেঙে পড়ে। কিছু কাল্পনিক কালে কোনো অননাতা কিছা সীমানা
নেই। সেইজনা আমরা যাকে কাল্পনিক কাল বলি হয়তো সেটাই আরো বেলী মূলগত (more
basic), হয়তো যাকে আমরা বাস্তব বলি সেটা একটি চিন্তন মাত্র। সে চিন্তনকে আমরা আনিকার
করি মহাবিদ্ধ সম্পর্কে আমাদের চিন্তনের বিবরণ দেওয়ার জনা। কিছু প্রথম অধ্যায়ে বিবৃত
প্রথম মত অনুসারে— বৈজ্ঞানিক তত্ত্ব একটি গাণিতিক প্রতিরশ মাত্র। এগুলি আমরা তৈরী
করি আমাদের পর্যক্ষেশের বিবরণ দেওয়ার জনা। তত্ত্বের অস্তিত্ব শুধুমাত্র আমাদের মনে।
সূতরাং কোনটা বাস্তব কোনটা বাস্তব কাল কিছা কোনটা কাল্পনিক কাল—এসমস্ত প্রপ্ন অর্থহীন।
ক্যেন বিবরণটি বেলী কার্যকর সেটাই একমাত্র বিচার্য বিষয়ে।

মহাবিশ্বের কোন কোন ধর্ম একসক্ষে বর্তমান থাকতে পারে সেটা নির্ধারণ করার জনা সীমানাহীনতার প্রস্তাবের সঙ্গে ইতিহাসগুলির যোগফল একসঙ্গে ব্যবহার করা যেতে পারে। উদাহরণ: যখন মহাবিশ্বের ঘনত্বের বর্তমান মূল্যান্ধ রয়েছে তথন মহাবিশ্বের প্রায় এক হারে প্রত্যেক বিভিন্ন দিকে যুগপৎ সম্প্রসারণের সঞ্জাবনা গণনা করা যেতে পারে। এ পর্যন্ত যে কটা সর্বলীকৃত প্রতিরূপ নিয়ে গবেষণা হয়েছে সে সব ক্ষেত্রে দেখা যাছে এ সম্ভাবনা কেশী। অর্থাৎ মহাবিশ্বের বর্তমান সম্প্রসারণের হার সর্বদিকেই প্রায় সমান হওয়ার সম্ভাবনা অন্তাধিক: এই ভবিষাদ্বাদীর পথিকৃৎ হল প্রস্তাবিত সীমানাহীনতার অবস্থা। এই সম্ভাবনার সঙ্গে মাইক্রোওয়েভ বিকিরণের পশ্চাৎপটের সন্থতি রয়েছে। এ থেকে দেখা যায়: যে কোনো অভিমুখেই এই বিকিরণের তীব্রতা প্রায় নির্ভুলভাবে সমান। যদি মহাবিশ্বের সম্প্রসারণ কতগুলি অভিমুখের তুলনায় অনা কোনো ফোনো অভিমুখে ক্রততর হোত তাহলে ঐ সমস্ত অভিমুখে বিকিরণের তীব্রতা কম হোত। হ্রাসের পরিমাণ হোত একটি বাড়িত লোহিত বিচ্নাতি (by an additional red shift)।

সীমানাহীন অবস্থা সাপেক্ষ অন্যান্য তবিষাথাণী নিয়ে বর্তমানে কাজ চলছে। আদিয় মহাবিশ্বের একরূপ ঘনত্ব থেকে যে সমস্ত সামান্য বিচ্যুতির ফলে প্রথমে নীহারিকা, তার পর তরিকা এবং শেষ পর্যন্ত আমাদের উদ্ভব হয়েছে সেগুলির পরিমাণ এক বিশের আকর্ষণীয় সমসাঃ আদিম মহাবিশ্ব সম্পূর্ণ একরূপ হতে পারত না, তার কারণ কণিকাপ্তলির অবছান এবং গতিবেগে (velocity) কিছু অনিশ্চরতা এবং হ্রাসবৃদ্ধি থাকতেই হোত: অনিশ্চরতার নীতির ভিতরেই এ তথা নিহিত আছে। সীমানাহীন অবছা বিচার করে আমরা জানতে পারি—আসলে মহাবিশ্ব নিশ্চয়ই শুক হয়েছিল অনিশ্চরতার নীতি অনুমোদিত সন্তাব্য সর্বনিম্ম রিচুতি দিয়ে। তারপর মহাবিশ্ব কিছুকাল অভিশ্বীতিমান প্রতিরূপে যে রক্তম অনুমান করা হয়েছে সেই রক্তম ক্রত সম্প্রসারিত হয়েছিল। এই যুগে মহাবিশ্বের প্রাথমিক একরুপত্বের জভাব ক্রমণ বৃদ্ধি পেয়েছে এবং বৃদ্ধি পেতে পেতে এমন অবস্থায় সৌহেছে, যা আমাদের সর্বদিকে পর্যক্ষেণ করা গঠনগুলির উদ্ভব (origin of the structures) ব্যাখ্যা করতে সক্তম। যে সম্প্রসারণমান মহাবিশ্বে ছান থেকে স্থানান্তরে পদার্থের ঘনত্বের সামানা হ্রাসবৃদ্ধি হয়, সেখানে মহাকর্ষের ক্রিয়ায় ঘনতর অঞ্চলের সম্প্রসারণ ছথতর হবে এবং সে অঞ্চলগুলির সন্থোচন শুক্ত হবে। এর ফলে গঠিত হবে নীহারিকা, তারকা এবং শেষ পর্যন্ত সৃষ্টি হবে আমাদের মতো নগণ্য জীব! সেইজন্য আমরা যে সমস্ত জটিল গঠন দেখতে পাই সেগুলি মহাবিশ্বের সীমানাহীন অবস্থা এবং কণাবাদী বলবিদ্যার অনিশ্বয়তার নীতির সাহায্যে ব্যাখ্যা করা সপ্তব।

ছান এবং কাল একটি সীমানাহীন বন্ধ পৃষ্ঠ (closed surface) গঠন করতে পারে:
মহাবিদ্বের ব্যাপারে ঈশ্বরের ভূমিকা বিষয়ে এই চিন্তনের ফলশ্রুতি হতে পারে গভীর। ঘটনাবলী
ব্যাখ্যায় বৈজ্ঞানিক তত্ত্বগুলির সাফল্যের ফলে অধিকাংশ লোকই এখন বিশ্বাস করেন ঈশ্বর
একগ্রছ বিধি অনুসারে মহাবিশ্বের বিবর্তন অনুমোদন করেন এবং এই বিধি ভঙ্গ করে জিনি
মহাবিশ্বে হস্তক্ষেপ করেন না। কিন্তু শুক্ততে মহাবিশ্বের চেহারা কি রক্ষম ছিল সে, বিষয়ে
বিধিগুলি কিছুই বলে না। এই ঘড়ির মতো গতি বন্ধ করা ঈশ্বরেরই দায়িত্ব এবং কি করে
এটি আবার শুক্ত করকেন সে পছতি নির্বাচনের দায়িত্বও ঈশ্বরেরই। যতক্ষণ পর্যন্ত মহাবিশ্বের
শুক্ত ছিল ততক্ষণ পর্যন্ত আমরা অনুমান করতে পারতাম মহাবিশ্বের একজন শ্রন্তাও ছিল।
কিন্তু মহাবিশ্ব যদি সতিই পূর্ণরূপে হ্যাংসম্পূর্ণ হয় এবং যদি এর কোনো সীমানা কিন্তা কিনারা
না থাকে, তাহলে এর আদিও থাকবে না, অস্তাও থাকবে না— থাকবে শুধু অন্তিত্ব। তাহলে
শ্রন্তার স্থান কোথায়?

৯ lainternet

সময়ের তীর

(The Arrow of Time)

আগের অধায়গুলিতে আমরা দেখেছি কালের ধর্ম সম্পর্কে আমাদের দৃষ্টিভঙ্গি কিভাবে সময়ের সঙ্গে বদলেছে। এই শতাব্দীর শুরু পর্যন্ত লোকের বিশ্বাস ছিল পরম কালে। আর্থাৎ প্রতিটি ঘটনাকেই "কাল" নামক একটি বিশেষ সংখ্যা থারা অনন্য উপায়ে চিহ্নিত করা যায় এবং বিশ্বাস ছিল দৃটি ঘটনার অন্তর্বতী কাল বিষয়ে প্রতিটি ভাল ঘড়িরই মতৈকা থাকবে। কিছু পর্যক্ষেক যে ভাবেই চলমান হোন না কেন আলোকের গতি সব সময় প্রতিটি পর্যবেক্ষক সাম্পেক্ষ একই মনে হবে—এই আবিদ্ধার অপেক্ষবাদের পথ দেখাল এবং তার ফলে অনন্য পরম কাল সম্পর্কিত চিদ্ভাখারা পরিত্যাগ করতে হল। তার বদলে ধারণা হল প্রতিটি পর্যবেক্ষকেরই কালের মাপন হবে তার নিজস্ব এবং সেটা চিহ্নিত হবে তিনি যে ঘড়ি বহন করছেন তার সাহায্যে। বিভিন্ন পর্যবেক্ষকের বহন করা নিজস্ব ঘড়িতে সব সময় মতৈকা থাকবে তার কোনো অর্থ নেই। সূত্রাং কাল হয়ে দাঁড়াল একটি আরও ব্যক্তিগত থারণা এবং সে ধারণা যে পর্যবেক্ষক মাণছেন সেই পর্যবেক্ষক সাপেক্ষ।

মহাকর্ষের সঙ্গে কণাবাদী বলবিদ্যা মেলানোর চেষ্টার ফলে 'কাল্পনিক' কাল সম্পর্কিত চিন্তন উপস্থিত করতে হয়েছে। কাল্পনিক কালের সঙ্গে স্থানে অভিমুখের পার্পক্য করা সম্ভব নয়। কেউ উদ্ভরে গোলে—অভিমুখ ঘুরিয়ে নিয়ে তিনি দক্ষিণেও যেতে পারেন। কেউ যদি কাল্পনিক কালে সম্মুখে যেতে পারেন তাহলে অভিমুখ ঘুরিয়ে তাঁর পশ্চাতে যাওয়াও সম্ভব হওয়া উচিত। এর অর্থ: কাল্পনিক কালে অগ্র পশ্চাৎ অভিমুখের ভিতরে কোনো গুরুত্বপূর্ণ পার্থক্য থাকা সম্ভব নয়। অন্য দিকে বান্তব' কালের অভিমুখে দৃষ্টি দিলে অগ্র পশ্চাৎ অভিমুখের ভিতরে কোনো গুরুত্বপূর্ণ পার্থক্য থাকা সম্ভব নয়। অন্য দিকে বান্তব' কালের অভিমুখে দৃষ্টি দিলে অগ্র পশ্চাৎ অভিমুখের ভিতরে রয়েছে নিরাট পার্থকঃ। আমরা স্বাই একথা জানি। অতীত এবং ভবিষ্যতের এই

পার্থকোর উৎস কি ? কেন আমরা অতীতকে মনে রাখি কিন্তু ভবিষ্যৎকে মনে রাখি নাটে 🗵 🗎 🗎 🦰 🦰

বিজ্ঞানের বিধিগুলি অতীত এবং ভবিষাতের ভিতরে কোনো পার্থকা স্বীকার করে না। আগের ব্যাখ্যা মতো আরও সঠিকভাবে বলা যায় C, P, এবং T-এর সমন্বয় ক্রিয়াতে (কিয়া প্রতিসায়ো—symmetries) বিজ্ঞানের বিধিগুলি অপরিবর্তিত থাকে। (C-এর অর্থ কিবার বিপরীত কবিকায় পরিবর্তন, P-এর অর্থ দর্শন প্রতিবিদ্ধ গ্রহণ—অর্থাং বাম এবং ডানের পরস্পরে পরিবর্তন, এবং T-এর অর্থ সমস্ত কবিকার গতির অভিমুখ বিপরীত করা: কার্যত কবিকার গতিকে পশ্চাংমুখী করা)। C এবং P-নামক দুটি ক্রিয়া স্বকৃতভাবে সমন্বিত হলেও সমস্ত স্থাভাবিক অবস্থায় বিজ্ঞানের যে বিধিগুলি পনার্থের আচরণ নিয়ন্ত্রণ করে সেগুলি অপরিবর্তিত থাকে। অন্যভাবে বলা যায় অন্য একটি গ্রহের অধিবাসীরা যদি আমাদের দর্শণ প্রতিবিদ্ধ হয় এবং যদি পদার্থ দিয়ে গঠিত না হয়ে বিপরীত পদার্থ দিয়ে গঠিত হয় ভাহনেও তাদের জীবন একই রকম হবে।

C এবং P ক্রিয়া আর CP এবং T ক্রিয়ার সমন্বয়ে যদি বিজ্ঞানের বিধিগুলি অপরিবর্তিত থাকে তাহলৈ শুধুমাত্র T ক্রিয়ার ক্ষেত্রেও সেগুলি অপরিবর্তিত থাকবে। তবুও সাধারণ জীবনে বাস্তব কালের ক্ষেত্রে অগ্র পশ্চাং অভিমূখে একটি বিরাট পার্থকা থাকে। করনা করনা টেবিল থেকে একটি জলের পেয়ালা মেখেতে পড়ে গিয়ে টুকরো টুকরো হয়ে গেল। এর একটি আশোকচিত্র নিলে আপনি সহক্রেই বলতে পারকেন চিত্রটি অগ্রগামী না পশ্চাংগামী। আপনি অতীতের দিকে চালনা করলে দেখবেন টুকরোগুলি মেঝে থেকে হঠাৎ একত্রিত হয়ে লাফিয়ে টেবিলের উপর উঠে একটি সম্পূর্ণ পেয়ালা হয়ে গিয়েছে। আপনি বলতে পারকেন আলোকচিত্রটি পশ্চাংগামী, কারণ এরকম আচরণ সাধারণ জীবনে কখনোই দেখা যায় না। এরকম হলে যারা চীনামাটির বাসনপত্র তৈরী করে। তাদের বাবসা উঠে যেত।

শেয়ালার ভাঙা টুকরোগুলি মেঝেভে একত্র হয়ে কেন আবার টেবিলে ওঠে না, ভার কারণ সাধারণত দেখানো হয়: তাপগতিবিদ্যার দ্বিতীয় বিধি অনুসারে এটা নিবিদ্ধ। এই বিধি অনুসারে যে কোনো বন্ধ ভঙ্গে (closed system) কালের সঙ্গে সঙ্গে বিপৃদ্ধাল (entropy) সবসময়ই বৃদ্ধি পায়। অন্য কথায় বলা যার, এটা এক ধরনের মারফির বিধি (Murphy's law)। জিনিষপত্র সব সময়েই গোলমাল হয়ে যেতে চায়। টেবিলের উপরের না ভাঙা পেয়ালাটি একটি উচুদরের সংগঠিত অবস্থা; মেঝের উপরের ভাঙা পেয়ালাটি একটা বিশৃদ্ধাল অবস্থা। টেবিলের উপরের অতীতের পেয়ালা থেকে মেঝের উপরের ভবিষ্যতের ভাঙা পেয়ালায় স্বান্ধনেই যাওয়া যায় বিশ্ব উপ্টো দিকে যাওয়া যায় না।

তথাকথিত কালের ভীরের একটি উদাহরণ হল কালের সঙ্গে বিশ্বালা (এন্ট্রাপি — entropy) কৃষি। এই কালের তীর অতীত আর ভবিষাতের পার্থকা আনে, কালকে একটি অভিমুখ দান করে। অন্ততপক্ষে ভিনটি বিভিন্ন কালের তীর রয়েছে। প্রথমটি তাশগভীয় (thermo-dynamic) কালের তীর—অর্থাৎ কালের যে অভিমুখে বিশ্বালা কৃষি পায়। তাহাড়া রয়েছে মনস্তাত্তিক কালের তীর (psychological arrow of time)। এটা হল সেই অভিমুখ-যে অভিমুখে আমরা কালের প্রোত বোধ করি— যে অভিমুখে অতীত শারণ করি কিছু ভবিষাৎ শারণ করি না। আর তান্তিমে রয়েছে মহাবিশ্বভার্তিকিক

্রিcosmological) কালের তীর। মহাবিশ্ব সন্ধৃতিত না হয়ে যে অভিমুখে সম্প্রসারিত হঙ্গে এটা হল সেই অভিমুখ।

মহাবিশ্বের সীমানাহীনতার অবস্থার সঙ্গে দুর্বল নরত্বীয় নীতি যুক্ত করলে তিনটি তীরের কেন একই অভিমুখ-সেটা ব্যাখ্যা করা যেতে পারে। তাহাড়া ব্যাখ্যা করা যেতে পারে কেনই বা একটি ভাল সংজ্ঞাবিলিষ্ট কালের তীর থাকবে। এই অধ্যায়ে আমি সেই তথ্যের সমর্থনে যুক্তি দেখাব। আমার যুক্তি হবে তাপগতীয় তীর নির্ধারণ করে মনস্তান্ত্রিক তীর এবং এই দুটি তীরের অভিমুখ অবশাস্তাবী রূপে সব সময় অভিন্ন। যদি মহাবিশ্বের সীমানাহীন অবস্থা মেনে নেওয়া হয় তাহলে আমরা দেখব সুসংজ্ঞিত তাপগতীয় এবং মহাবিশ্বভত্ত্বভিত্তিক কালের তীর অবশাই থাকবৈ কিন্তু মহাবিশ্বের ইতিহাসের সমগ্রকালে তাদের অভিমুখ এক থাকবে না। কিন্তু আমার যুক্তি হবে—যখন তাদের অভিমুখ অভিন হয় একমাত্র তখনই এই প্রশ্ন করার উপযুক্ত বৃদ্ধিমান জীব বিকাশের উপযুক্ত অবস্থা হয় : কালের যে অভিমুখে মহাবিশ্ব সম্প্রসারণশীল, সে অভিমুখেই কেন বিশ্বশ্বালা বাড়ে?

প্রথমে আমি আলোচনা করব তাপবিদ্যুৎ গতীয় কালের তীর। সব সময়ই সুশৃঙ্খল অবস্থার চাইতে বিশৃঙ্খল অবস্থার সংখ্যা অনেক অনেক বেশী। এই তথোরই ফলপ্রুতি তাপগতি বিদ্যার দ্বিতীয় বিধি। বিচার করুন একটি বাস্থের ভিতরের কয়েক টুকরো জিগ্স (Jigsaw-করাত দিয়ে কাটা কয়েকটা টুকরো। ঠিকমতো মেলাতে পারলে একটি ছবি হয়)। এগুলির একটি এবং একটিমত্রে বিন্যাসেই সম্পূর্ণ একটি ছবি হয়। কিছ টুকরোগুলির এমন বহুসংখাক বিন্যাস আছে যেগুলিতে টুকরোগুলি বিশৃঙ্খল থাকে এবং কোনো ছবিই হয় না।

অনুমান করা যাক একটি, তন্ত্র খুব অল্প সংখ্যক সৃশৃঞ্জল অবস্থার কোনো একটিতে শুক্ত হয়েছে। কালে কালে বৈজ্ঞানিক বিধি অনুসারে তন্ত্রগুলির বিবর্তন হবে এবং তন্ত্রটির অবস্থারও পরিবর্তন হবে। পরবর্তীকালে তন্ত্রটির সুশৃঞ্জল অবস্থার চাইতে বিশৃশ্জল অবস্থায় উপনীত হওয়ার সঞ্জাবনাই বেশী। তার কারণ বিশৃশ্জল অবস্থার সংখ্যা বেশী। সূতরাং তন্ত্রটি যদি প্রাথমিক শুরে উচ্চশুরের শৃঞ্জলা মেনে চলে তাহলে কালে কালে বিশৃশ্জলা বৃদ্ধির প্রবণতা থাকবে।

অনুমান করা যাক জিগ্স-এর বক্তপ্রলি একটি বাজে শুরু করল একটি সুশৃত্বল অবস্থায়।
এ অবস্থায় তারা একটি চিত্র গঠন করল। বাজটিকে একটি ঝাঁকুনি দিলে তারা অন্য বিন্যাস
গ্রহণ করবে, সম্ভবত সেটি হবে একটি বিশৃত্বল বিন্যাস। সে অবস্থায় খণ্ডগুলি আর সঠিক
চিত্রগঠন করতে পারবে না। তার সহজ কারণ হল বিশৃত্বল অবস্থার সংখ্যা অনেক বেশী।
কিছু কিছু খণ্ড একত্র হয়ে তখনো হয়তো চিত্রটির কিছু অংশ গঠন করতে পারবে। কিন্ত
বাজটিকে যত ঝাঁকুনি দেবেন— সম্ভাবনা হল ঐ অংশগুলি ততই তেঙে তালগোল পাকিয়ে
গ্রের। এ অবস্থায় তারা আর কোনো রকম চিত্রই গঠন করতে পারবে না। সূত্রাং খণ্ডগুলি
গদি প্রথমে উচ্চস্তরের সুশৃত্বল অবস্থা নিয়ে শুরু করে তাহলেও সম্ভাবনা হল কালে খণ্ডগুলির
বিশৃত্বলা বৃদ্ধি পাবে।

কিছ অনুমান করা যাক, ঈশ্বর স্থির করেছিলেন মহাবিশ্বের শুরু যে ভাবেই হোক না কেন এর পরিণতি হারে উচ্চন্ডরের সৃশ্ব্যুল অবস্থা। আদিমকালে মহাবিশ্ব হয়তো বিশৃদ্ধাল অবস্থায় থাকবে। তার অর্থ কালের সঙ্গে বিশৃন্থলা হ্রাস পাবে। আশনি ভাঙা শেয়ালার টুকরোগুলির একত্র হয়ে টেবিলের উপর লাফিয়ে ওঠা দেখতে পাবেন। কিন্তু টুকরোগুলিকে পর্যবেক্ষণ করছেন এরকম যে কোনো মানুষ এমন মহাবিশ্বে বসবাস করবেন যেখানে কালের গতির সঙ্গে বিশৃঞ্জা হ্রাস পায়। আমার যুক্তি হবে সেই সমস্ত মানুষের কালের মনস্তান্ত্রিক তীর হবে পশ্চাৎমুখী। অর্থাৎ তারা ভবিষাতের ঘটনাগুলি মনে রাখবে, অতীতের ঘটনাগুলিকে মনে বাখবে না। পেয়ালাটি যখন ভেঙে যাবে তখন তারা মনে রাখবে ওটা টেবিলের উপর ছিল। আবার ওটা যখন টেবিলের উপর থাকবে তখন ওরা মনে রাখবে না যে, ওটা মেঝের উপর ছিল।

মানবিক স্মৃতিশক্তি বিষয়ে আলোচনা করা শক্ত, কারণ মস্তিষ্ক কিভাবে কাল করে সেটা আমরা বিস্তৃতভাবে জানি না। কিন্তু কমপিউটারের স্মৃতিশক্তি কিভাবে কাল করে তার সবটাই আমরা জানি। সেইজনা আমি কমপিউটার সাপেক্ষ কালের মনস্তাত্ত্বিক তীর নিয়ে আলোচনা করব। আমার মনে হয় কমপিউটারের তীর এবং মানবিক তীর অভিন্ন: এ অনুমান যুক্তিসঙ্গত। তা যদি না হোত তাহলে আগমিকালের মূল্য মনে রাখে এরকম কোনো কমপিউটারের মালিক হলে শেয়ার বাজারে বিরাট লাভ করা যেত।

একটি কমপিউটারের স্মৃতিশক্তি মূলত একটি কৌপল যার এমন কতন্তলি উপাদান আছে যেগুলি দৃটি অবস্থার যে কোনো একটি অবস্থায় থাকতে পারে। সবচাইতে সরল উদাহরণ হল একটি আবোকাস্ (Abacus)। এর যে সরলতম রূপ তাতে থাকে কয়েকটি তার। প্রতিটি তারে একটি করে গুটি থাকে। গুটিটিকে যে কোনো দুটি অবস্থানের একটি অবস্থানে রাখা যায়। কমপিউটারের স্মৃতিতে একটি জিনিষ নথিভুক্ত করার আগে তার স্মৃতি থাকে বিশৃঙ্খল অবস্থায়। দৃটি সম্ভাব্য অবস্থার যে কোনো একটি অবস্থার সম্ভাবনা থাকে সমান। (আ্যাবাকাসের গুটিগুলি তারের উপর এলোমেলো তাবে ছড়ানো থাকে।) স্মৃতিশক্তি একং শ্মরণীয়ের পারস্পরিক ক্রিয়ার পর গুটিগুলি নিশ্চিত ভাবে দুটি অবস্থার একটি অবস্থায় থাকবে আর সেটা নির্ভর করবে তন্ত্রটির অবস্থার উপর। (আবাকাসের প্রতিটি গুটি থাকে তারের বাঁ দিকে কিন্তা ডান দিকে)। সূতরাং স্মৃতিটি কিপৃত্বল অবস্থা থেকে সূপৃত্বল অবস্থায় পৌঁছেছে, কিছ স্মৃতিটি সঠিক অবস্থায় রয়েছে সেটা নিশ্চিত করার জন্য একটি বিশেষ পরিমাণ শক্তি ব্যবহার করা প্রয়োজন। (উদাহরণ: গুটিটিকে চালানো কিম্বা কমপিউটারে শক্তি সরবরাহ করা)। এই শক্তি ক্ষয় হয়ে তাপের রূপ নেয় এবং মহাবিছে বিশুঝুলার পরিমাণ বৃদ্ধি করে। বিশৃশ্বলা বৃদ্ধি সবসময়ই স্মৃতির শৃশ্বলা বৃদ্ধির চাইতে বেশী: এটা সর্বদাই দেখানো যেতে পারে। সূতরাং কমপিউটার শীতল রাখার পাখা যে তাপ বহিষ্কার করে তার অর্থ হল কমপিউটার যখন একটি জিনিষ স্মৃতির অন্তর্ভুক্ত করে তখনও মহাবিশ্বের মোট বিশুখুলার পরিমাণ বৃদ্ধি পায়। সময়ের যে অভিমুখে কম্পিউটার অতীতকৈ শারণ করে সেই অভিমুখ এবং বিশৃশ্বলা বৃদ্ধির অভিমুখ অভিন্ন।

সূতরাং কালের অভিমুখ সম্পর্কে আমাদের ব্যক্তিনিষ্ঠ (subjective) বোধ অর্থাৎ

কিলের মনিস্তান্ত্রিক তীর আমাদের মস্তিকের ভিতর ছির হয় কালের তাশগতীয় তীর দিয়ে।

ঠিক একটি কর্মশিউটারের মতো— যে ক্রমে বিশৃদ্ধলা (entropy) বাড়ে, সেই ক্রমেই আমাদের

বিভিন্ন বিষয় স্মর্নেল রাখতে হবে। এর ফলে তাশগতিবিদ্যার দ্বিতীয় বিধি প্রায় তুচ্ছ হয়ে

দাঁড়ায়। কালের গতির সঙ্গে বিশৃদ্ধলা বৃদ্ধি পায় তার কারণ যে অভিমুখে বিশৃদ্ধলা বৃদ্ধি

শায় সেই অভিমুখেই আমরা কাল মাশি। এর চাইতে ভাল বাজি ধরার বিষয় আশনি খুঁজে

শাবেন না।

কিন্তু কালের তাপগতীয় তীরের অস্তিত্ব কেন থাকবে ? কিয়া অন্য কথায় বলা যায়— কালের একটি প্রান্তে (অর্থাৎ যে প্রান্তকে আমরা অতীত বলি) মহাবিশ্ব কেন উচ্চন্তরের সুশৃদ্খল অবস্থায় থাকবে ? কেন সবসময় সম্পূর্ণ বিশৃদ্খল অবস্থায় থাকবে না ? আসলে এ সম্ভাবনাই সবচাইতে বেলী বলে মনে হতে পারে এবং কেন সময়ের যে অভিমুখে বিশৃদ্খলা বৃদ্ধি পায় এবং যে অভিমুখে মহাবিশ্ব সম্প্রসারণদীল সেই দৃটি অভিমুখ অভিন্ন ?

মহাবিশ্ব কিভাবে শুক্র হোত সে বিশ্বয়ে কোনো ভবিষাদ্বাদী করা চিরায়ত ব্যাপক অপেক্ষবাদের পক্ষে সম্ভব নয়। কারণ বৃহৎ বিস্ফোরণের অন্যাভায় বিজ্ঞানের সমস্ভ জানিত বিধি ভেঙে পড়ে। মহাবিশ্ব অভাস্ত মসৃণ এবং সুশৃদ্বলে অবস্থায় শুক্ত হতে পারত। সে অবস্থা হতে পারত আমাদের পর্যক্ষেপ করা কালের সুসংজ্ঞিত ভাপগতীয় এবং মহাবিশ্বভন্ত্বভিত্তিক কালের তীরের পথিকৃৎ। কিন্তু এটা একই রকম ভালভাবে শুক্ত হতে পারত পিশুপিশু (lumpy) এবং বিশৃদ্বলে অবস্থায়। সেক্ষেত্রে মহাবিশ্ব থাকত সম্পূর্ণ বিশৃদ্বলে অবস্থায়, সূত্রাং কালের গতির সঙ্গে বিশৃদ্বলা আর বাড়তে পারত না: হয় স্থির থাকত, নয়তো বিশৃদ্বলা হ্রাস পেত। স্থির থাকলে কালের কোনো সুসংজ্ঞিত ভাপগতীয় তীর থাকত না। হ্রাস পেলে কালের ভাপগতীয় তীরের অভিমুখ এবং মহাবিশ্বভন্ত্বভিত্তিক তীরের অভিমুখ হোত বিপরীত। আমাদের পর্যক্ষেশ্বন সঙ্গে এ দুটি সন্তাবনার কোনোটিই মেলে না। আমরা কিন্তু দেখেছি চিরায়ত ব্যাপক অপেক্ষবাদ ভবিষাদ্বাদী করে নিজের পতনের। স্থান-কালের বক্ষতা বৃহৎ হলে কণাবাদী মহাক্ষীয় অভিক্রিয়া (quantum gravitational effect) গুকুত্বপূর্ণ হবে এবং মহাবিশ্বর উত্তম বিবরণক্ষপে চিরায়ত ভত্তের অন্তিত্ব আর থাকবে না। মহাবিশ্বর আরম্ভ বুঝতে হলে কণাবাদী মহাক্ষীয় তত্ত্ব ব্যবহার করতে হবে।

আগের অধ্যায়ে আমরা দেখেছি কণাবাদী মহাক্ষীয় তত্ত্বে মহাবিশ্বের অবস্থার বিবরণ দিতে হলেও বলতে হবে মহাবিশ্বের সন্তাব্য ইতিহাসগুলির অতীতের স্থান-কালের সীমান্তে কিরকম আচরণ হোত। ইতিহাসগুলি যদি সীমানাহীনহার শঠ পূরণ করে অর্থাৎ তারা যদি আয়তনে সসীম হয় কিছু তাদের কোনো সীমানা, কিনারা কিছা অনন্যতা যদি না থাকে তাহলে আমরা যা জানি না এবং যা জানা সম্ভব নয় তার বিবরণ দেওয়ার অসুবিধা এড়াতে পারি। সেক্ষেত্রে কালের আরম্ভ হবে স্থান-কালের একটি নিয়মানুগ (regular) মসৃণ বিশ্বু এবং মহাবিশ্ব তার সক্ষাস্থারণ শুক্ত করবে অতান্ত মসৃণ এবং নিয়মানুগ অবস্থায়। সে ক্ষেত্রে মহাবিশ্ব সম্পূর্ণ সমরূপ হোত না কারণ তাহলে কণাবাদী তত্ত্বের অনিশ্চয়তাবাদ লভিয়ত হোত। কণাগুলির গতিবেগ এবং ঘনত্বে সামান্য হ্রাসবৃদ্ধি হতে হোত। কিছু সীমানাহীন অবস্থার নিহিতার্থ হল: এই হ্রাসবৃদ্ধি হোত ঘতটা সম্ভব অর তবে অনিশ্চয়তাবাদের সঙ্গে সামঞ্জসা রক্ষা করে।

[°] এकश्रद्रस्तत्र अत्रन धवनायञ्च -- ञनुवास्कः।

মহাবিশ্বের শুক্তে কিছুকাল অতি প্রত সম্প্রসারণ হোত (exponential or inflationary)— আয়তনে মহাবিশ্ব বৃদ্ধি পেত বহুগুণ। এই সম্প্রসারণের সময় ঘনত্বের হ্রাসবৃদ্ধি প্রথমে কম থাকত কিন্তু পরে বৃদ্ধি পেতে শুক্ত করত। যে অঞ্চলের ঘনত্ব গড় ঘনত্বের চাইতে সামানা বেশী সেই সমস্ত অঞ্চলে অধিক ভরের মহাক্ষীয় আকর্ষণের জন্য সম্প্রসারণের হার হ্রাস পেত। পরিণামে ঐ সমস্ত অঞ্চলের সম্প্রসারণ বন্ধ হোত এবং চুপ্সে গিয়ে তৈরী হোত নীহারিকা, তারকা এবং আমাদের মতো জীব। মহাবিশ্ব শুক্ত হোত মসৃণ এবং নিয়মানুগ অবস্থায় এবং কালের গতির সঙ্গে পিশু পিশু এবং কিশুঝ্ল হোত। এটাই হোত কালের তাপগতীয় তীরের ব্যাখা।

ক্ষ যদি মহাবিশ্বের সম্প্রসারণ বন্ধ হয়ে সঙ্কোচন শুরু হোড, তখন কি হোড? তাহলে কি কালের তাপগতীয় তীর বিপরীতমুখী হোত ? এবং কালের গতির সঙ্গে কি কিনুদ্ধুলা হ্রাস পেত ? যারা সম্প্রসারণদীল অবস্থা থেকে সম্ভোচনদীল অবস্থা পর্যন্ত বেঁচে থাকত তাদের সম্পর্কে নানা বৈজ্ঞানিক কল্পকাহিনীর মতে। সম্ভাবনার পথিকৃৎ হোত এরকম ঘটনা। তারা কি পেয়ালার ভাঙা টুকরোগুলির মেঝেতে একত্র হয়ে লাফিয়ে টেবিলে ফিরে যাওয়া দেখত ? তারা কি শেয়ার বাঞ্জারে পরের দিনের দাম মনে রেখে অনেক টাকা রোজগার করে নিত ? মহাবিশ্ব যখন আবার চুপ্সে যাবে তখন কি হবে তা নিয়ে মাথা ঘামানো একটু বেশী পগুজীর (academic) ঝাশার হয়ে যাবে কারণ অস্তত এক হাজার কোটি বছরের আগে মহাবিশ্বের সঙ্কোচন শুরু হবে না। কিন্তু কি হবে সেটা জানবার একটি দ্রুততর পদ্ধতি আছে: কৃষ্ণগহুরে ঝাঁপ দেওয়া। একটি তারকা চুপ্সে গিয়ে কৃষ্ণগহুর তৈরী হওয়া অনেকটা সমগ্র মহাবিশ্বের চুপ্সে যাওয়ার শৈষের অবস্থার মতো। সূতরাং যদি মহাবিশ্বের সক্ষোচনশীল অবস্থায় বিশৃঞ্জা হ্রাস পায় তাহলে আশা করা যেতে পারে কৃষ্ণগহরের ভিতরেও বিশৃশ্বলা হ্রাস পারে। সূতরাং একজন মহাকাশচারী কৃষ্ণগহরের ভিতর পড়ে গেলে হয়তো তিনি রুলেট (roulette- এক ধরনের জুয়া-- ছোট ছোট বল দিয়ে খেলা হয়) খেলায় বলটা কোথায় গিয়েছে বাজি ধরার আগেই সেটি মনে রেখে অনেক টাকা করতে পারবেন। (কিছু তিনি দুর্ভাগক্রেমে কেশীক্ষণ খেলতে পারকেন না— তার আগেই তিনি স্প্যামেটি (এক ধরনের সেমাই) হয়ে যাবেন। তিনি কালের তাপগতীয় তীরের বিপরীতমুখী হওয়ার সংবাদও আমাদের দিতে পারবেন না কিম্বা বান্ধিতে ক্ষেতা টাকা ব্যাঙ্কে দিতেও পারবেন না। তার কারল তিনি কৃষ্ণগহুরের ঘটনা দিগ**ন্তে**র আড়ালে আটকে যাবেন)।

প্রথমে আমার বিশ্বাস ছিল মহাবিশ্ব পুনর্বার চুপ্সে গোলে বিশৃষ্কালা হ্রাস পাবে। কারল আমার ধারণা ছিল মহাবিশ্ব যখন আবার ক্ষুদ্র হবে তখন তাকে মসৃণ আর নিয়মানুগ অবস্থায় ফিরে যেতে হবে। এর অর্থ হোত সন্তোচনের দশা সম্প্রসারণের দশার কালিক বৈপরীতার মতো হবে। সন্তোচনের অবস্থায় মানুষ তার জীবন যাপন করবে পশ্চাৎমুখী হয়ে: জন্মের আগেই মৃত্যু হবে এবং মহাবিশ্ব যেমন সন্তুচিত হবে তারাও তেমন তরুণতর হবে।

এ চিস্তনের আকর্ষণ আছে কারণ এর অর্থ হবে সন্ধোচন দশা এবং সম্প্রসারণ দশার ভিতরে একটি চমৎকার প্রতিসামা (symmetry)। কিন্তু মহাবিশ্ব সম্পর্কিত অন্যান্য চিন্তন থেকে বিচ্ছিন্ন করে এই চিন্তনকে শুধুমাত্র তার নিজস্বতা দিয়ে প্রহণ করা যায় না। প্রশ্নটা হল 🖟 জ মারণা কি সীমানাহীন অবস্থার ভিতরে নিহিত আছে? না কি ঐ অবস্থার সঙ্গে এ ধারণা সন্ধতিহীন ? আমি আগে বলেছি— আমি ডেবেছিলাম সীমানাহীন অবস্থার ভিতরে এই চিন্তন নিহিত আছে যে সঙ্কোচনের দশায় বিশৃঙ্খলা হ্রাস পাবে। আমার ভুল হয়েছিল অংশত ভুপুষ্ঠের সঙ্গে উপমার (analogy- উপমা) ফলে। যদি মহাবিদ্বের আরম্ভকে উত্তর ∖মক্রর অনুরূপ∉বলে ধরে নেওয়া হয় তাহলে অস্তিম অবস্থায় মহাবিশ্বের হওয়া উচিৎ আরস্তের র্ভানুরূপ, ঠিক যেমন দক্ষিণ মেরু উত্তর মেরুর অনুরূপ। উত্তর এবং দক্ষিণ মেরুর সঙ্গে মহাবিশ্বের শুরু এবং শেষের সাদৃশ্য কিন্তু কাল্পনিক কালে। বাস্তব কালে শুরু এবং শেষের ডিওরে খুবই পার্থক্য থাকতে পারে। মহাবিশ্বের একটি সরল প্রতিরূপ নিয়ে গবেষণায় চুপুসে যাওয়: অবস্থাকে মনে হয়েছিল সম্প্রসারণশীল দলার কালিক বৈপরীভাের মতা। আমার ভূল হওয়ার একটি কারণ এই গবেষণা। কিন্তু সীমানাহীন অবস্থা হলেই যে সন্তোচনশীল দশা সম্প্রসারণশীল দশার কালিক বৈপরীতা হবে এরকম কোনো আবশ্যিকতা নেই। এ বিষয়ে আমার দৃষ্টি আকর্ষণ করেছিলেন আমার সহক্ষী পেনস্টেট বিশ্ববিদ্যালয়ের ভন পেজ (Don Page)। রেমত লাফ্রাম (Raymond Laflamme) নামে আমার একজন ছাত্র তার গবেষণায় দেখলেন অন্য একটি সামান্য জটিল প্রতিরূপে মহাবিশ্বের চুপ্সে যাওয়া এবং মহাবিশ্বের সম্প্রসারণে অনেকটা পার্থকা। আমি বৃশ্বতে পারলাম নিজের ভূল : সীমানাহীন অবস্থার ভিতরে নিহিত অর্থ রয়েছে। সে অর্থ: সজোচনশীল দশায় বিশৃঙ্খলা বাড়তেই থাকবে। মহাবিশ্বের পুনর্বার সন্ধোচনের সময় কিম্বা কৃষ্ণগহুরের ভিতরে, কালের ভাপগভীয় কিম্বা মনস্তম্ভভিত্তিক তীরের বৈপরীতা (reverse) হবে না।

নিজের এরকম একটি তুল আবিস্কার করলে আপনি কি করবেন ? কিছু লোক কখনোই তুল স্বীকার করেন না এবং তাঁরা নিজেদের মত সমর্থন করার জন্য নতুন নতুন যুক্তি খুঁজে বার করেন আর অনেক সময়ই যুক্তিগুলি হয় পরস্পর সামঞ্জসাহীন : কৃঞ্চগহুর তল্পের বিরোধিতা করার জন্য এডিংটন এরকমই করেছিলেন। আবার অনেকে দাবী করেন প্রথমত তাঁরা কখনোই আসলে এই তুল দৃষ্টিভঙ্গি সমর্থন করেননি কিন্তা করলেও করেছেন ঐ দৃষ্টিভঙ্গি কতাঁয় সামঞ্জসাহীন সেটা দেখানোর জন্য। আমার মনে হয় যদি আপনি ছাপার অক্ষরে মেনে নেন যে আপনি ভুল করেছিলেন তাহলে ব্যাপারটা অনেক ভাল দেখায় আর বিভ্রান্তিও কমে। এর একজন ভাল উনাহরণ ছিলেন আইনস্টাইন। তিনি যখন মহাবিশ্বের একটি স্থির প্রতিরূপ গঠন করার চেষ্টা করিছিলেন তখন তিনি মহাবিশ্বতত্ত্বভিত্তিক ধ্রুবক উপস্থিত করেছিলেন। শেষে তিনি বলেছেন এটা ছিল তাঁর জীবনের সব চাইতে বড় ভুল।

কালের তীরের প্রসঙ্গে ফিরে এলে একটি প্রশ্ন থেকে যায়: আমাদের পর্যবেক্ষণে কেন কালের অপগতীয় তীর এবং মহাবিশ্বতব্যক্তিত্তিক তীরের অভিমুখ শ্রভিন্ন হয়? কিয়া অন্য কথায় বলা যায়: যে অভিমুখে মহাবিশ্ব সম্প্রসারিত হয়, কেন সেই অভিমুখেই বিশৃদ্ধলা বৃদ্ধি পান ? যদি একথা বিশ্বাস করা যায় যে সীমানাহীনতার প্রস্তাবে যে অর্থ নিহিত আছে বলে মনে হয় সেই অনুসারে মহাবিশ্ব প্রথমে সম্প্রসারিত হবে এবং পরে সন্ধৃতিত হবে, তাহলে একটি প্রশ্ন আসারে: কেন আমাদের অবস্থান সঞ্জোচনশীল দশায় না থেকে সম্প্রসারগণীল দশায় থাকবে?

সময়ের তীর

দুর্বল নরাহীয় নীতির ভিত্তিতে এ প্রস্লের উত্তর দেওয়া যেতে প্রারে। সঙ্গোচনশীল দশার অবস্থা এমন বুদ্ধিমান জীবের অস্তিত্তের উপযুক্ত হবে না যারা প্রশ্ন করতে পারে: যে অভিমুখে মহাবিশ্ব সম্প্রসারণশীল কেন সেই অভিমুখেই বিশৃদ্ধলা বৃদ্ধি পাছে ? সীমানাহীনতার প্রস্তাব যে ভবিষ্যন্থাণী করে তার অর্থ: আদিম মহাবিশ্বের শ্টীতির হার ছিল ফ্রান্তিক হারের (critical rate) খুব কাছাকাছি। সেই হারে পুনর্বার চুপুসে যাওয়া এড়ানো সম্ভব হবে একং বছকাল পর্যন্ত মহাবিশ্ব পুনর্বার চুপুসে বাবে না। ততদিনে তারকাগুলি পুড়ে শেষ হয়ে যাবে এবং সেগুলির ভিতরকার প্রোটন এবং নিউট্রনগুলির অবক্ষয় হয়ে সম্ভবত ভারা লঘু কণিকা প্রোটন, গ্র্যাভিটন এবং নিউট্রিনো এবং বিকিরণে (radiation) রূপান্তরিত হবে। তখন মহাবিদ্ধ গাকবে প্রায় সম্পূর্ণ বিশৃদ্ধল অবস্থায়। কালের শক্তিশালী ভাগগতীয় তীর থাকবে না। বিশৃঞ্জা আর বাড়তে পারবে না। তার কারণ, মহাবিশ্ব তখন প্রায় সম্পূর্ণ বিশৃঙ্খল অবস্থায়। কিন্তু বৃদ্ধিমান জীবের ক্রিয়াকর্মের জন্য কালের শক্তিশালী তাশগতীয় তীর প্রয়োজন। র্বেচে থাকবার জন্য মানুষের খাদাগ্রহণ প্রয়োজন। খাদা শন্তিদা একটি সুশৃস্থল রূপ। সেটি রূপান্তরিত হয় তাপে। তাপ শক্তির একটি বিশুখুল রূপ। সূতরাং মহাবিশ্বের সঙ্কোচনশীল দশায় বৃদ্ধিমান জীবের অন্তিত্ব সম্ভব নয় : কালের তাপগতীয় তীর একং মহাবিশতস্ত্রতিত্তিক তীরের একই অভিমূখ আমরা কেন দেখতে পাই তার ব্যাখ্যা এটাই। ব্যাপারটা কিছ এরকম নয় যে মহাবিশ্বের সম্প্রসারণের ফলে বিশৃঙ্গো বৃদ্ধি পায়, বরং সীমানাহীন অবস্থাই বিশৃঞ্জা বৃদ্ধি করে এবং সম্প্রসারণশীল দশাই শুধুমাত্র বৃদ্ধিনান জীবের উপযুক্ত অবস্থা।

সংক্ষেপে বলা যায় বিজ্ঞানের বিধি, কালের অগ্রগতি এবং পশ্চাৎগতির ডিডরে কোনো পার্থকা করে না। কিন্তু কালের অস্তত এমন তিনটি তীর রয়েছে যেগুলি অতীত এবং ভবিষাতের ভিতর পার্থকা করে। সেগুলি হল তাপগতীয় তীর অর্থাৎ যে অভিমূখে বিশৃঞ্জা বৃদ্ধি শায়, মনস্তান্ত্রিক তীর অর্থাৎ কালের যে অভিমূখে আমরা অতীত শ্মরণ করি কিন্তু ভবিষাৎ স্মরণ করি না এবং মহাবিশ্বতত্ত্বভিত্তিক তীর অর্থাৎ যে অভিযুখে মহাবিশ্ব সন্তুচিত না হয়ে সম্প্রাসারিত হয়। আমি দেখিয়েছি মনস্তাত্মিক জীর এবং তাপগতীয় তীব মূলত অভিন্ন, সূতরাং এই দুটি তীরের অভিমুখ সব সময়ই অভিন্ন হবে। মহাবিশ্বের সীমানাহীনতার প্রস্তাব কালের একটি সুসংক্ষিত তাপগতীয় তীবের অক্টিড় রয়েছে ধলে ভবিষ্যত্বাদী করে, কারণ মহাবিশ্বের আরম্ভ মসূপ এবং সুপুঞ্জ অবস্থায় হওয়া আবশ্যিক। এবং আমানের পর্যবেক্ষণে তাপগতীয় তীর এবং মহাবিশ্বতন্ত্ব ভিত্তিক তীরের ঐকোর কারণ : বৃদ্ধিমান জীবের অস্তিত্ব শুধুমাত্র সম্প্রসারণশীল দশায়ই থাকতে পারে। সংখ্যাচনশীল দশা অনুপযুক্ত হবে, তার কারণ সে দশায় কালের কোনো শক্তিশালী তাপগডীয় তীর থাকে না।

মহাবিশ্ব বোঝার প্রডেষ্টার মানবজাতির প্রগতি- যে মহাবিশ্বে বিশৃত্বলো বর্ধমান সেই মহাবিৰে একটি সুশুদ্ধল কোল (comer- ? নীড়) সৃষ্টি করেছে। এ বইয়ের প্রতিটি শব্দ যদি আপনি মনে রাখেন ডাহলে আপনার স্মৃতি প্রায় দু'মিলিয়ান (১০,০০,০০০ = এক মিলিয়ান) খণ্ড সংখ্যাদ নাথিভুক্ত করেছে, আপনার মন্তিন্তের শৃঙ্খালা বেড়েছে দু"মিলিয়ান এ**কক।** তবে এই বহু গড়বার সময় অন্তত এক হাজার কালরি খানারূপ সুশৃত্বল শতিকে আপনি

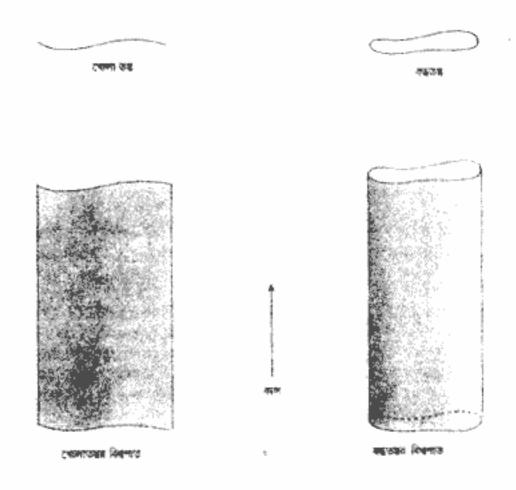
ভাপরূপ বিশৃত্বল শক্তিতে রূপান্তরিত করেছেন। এই পরিমাণ শক্তি ঘর্ম এবং পরিচলনের (পরিচলন-convection) ফলে দেহ থেকে;আপনার চার পাশের বায়তে হারিয়েছেন। এর ফলে মহাবিশ্বের বিশৃত্বলা বাড়বে প্রায় কৃষ্টি মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান একক অর্থাৎ আপনার মস্তিকে যে শৃত্বালা বেড়েছে, তার দশ মিলিয়ান, মিলিয়ান, মিলিয়ান গুণ, অবল্য আপনি যদি এ বইয়ের সবটাই মনে রাখেন। এতক্ষণ আমি যে সমস্ত আংশিক তত্ত্বের বিবরণ দিয়েছি কি করে লোকে সেগুলি সংযুক্ত করে মহাবিশ্বের সবকিছু ব্যাখ্যা করে এরকম সম্পূর্ণ একটি ঐক্যবদ্ধ তত্ত্ব গঠন করার চেষ্টা করছেন পরের অধ্যায়ে সেটা ব্যাখ্যা করে আমাদের পরিবেশের শৃত্বলা আর একটু বাড়াতে চেষ্টা করব।

)o i

পদার্থবিদ্যাকে ঐক্যবদ্ধ করা

(The Unification of Physics)

প্রথম অধ্যারে ব্যাখ্যা করা হয়েছিল-- মহাবিশ্বের স্বকিছু নিয়ে সম্পূর্ণ একটি ঐক্যবদ্ধ তত্ত্ব একবারে গঠন করা খুবই কঠিন হোত। তার বদলে আমরা একাধিক আংশিক ভশ্ব আবিষ্কার করে অপ্রসর হয়েছি। এই তত্ত্বস্তুলি ঘটনাস্মান্তির একটি সীমিড অঞ্চল ব্যাখ্যা করে। এই কান্ধে তারা অন্যান্য অভিক্রিয়া (effects) অগ্রাহ্য করে কিম্বা কিছু কিছু সংখ্যার সাহায্যো সেগুলির আসলতাম (approximating them) শৌহাতে চেষ্টা করে। (উনাহরণ : রসায়ন শাস্ত্র পরমাণুগুলির কেন্দ্রকের গঠন না জেনে ডাদের পারস্পরিক প্রতিক্রিয়া গণনা অনুমোদন করে)। শেষ পর্যন্ত কিছ একটি সম্পূর্ণ ঐকাবদ্ধ এবং সামঞ্জসাপূর্ণ তত্ত্ব আবিষ্কার আশা করা যায়। সমস্ত আংশিক ভত্তই আসমতারূপে সে তত্ত্বের অন্তর্ভক্ত হবে। সেই আংশিক তবুগুলির প্রয়োজন হবে না, ঘটনাবলীর সঙ্গে সামঞ্জসা রক্ষার জন্য তত্ত্বে কয়েকটি বাদৃচ্ছিক সংখ্যার মূল্য বেছে নেওয়া। এই রকম একটি তত্ত্ব অনুসন্ধানের নাম "পদার্থবিদ্যা ঐক্যবদ্ধ করা।" আইনস্টাইন জীবনের শেষ ক' বছরের অধিকাংশ সময়ই বায় করেছেন এরকম একটি তত্ত্বের সন্ধানে। কিছু সফল হননি। কারণ তখনো এরকম তত্ত্ব আবিষ্কারের সময় ছয়নি। মহাকর্ষ এবং বিদাৎ-চুম্বকীয় বল সম্পর্কে আংশিক তত্ত্ব ছিল কিছ কেন্দ্রকীয় বল (nuclear forces) সম্পর্কে তখন সামান্যই জানা ছিল। ডাছাড়া কণাবাদী বলবিদ্যা বিকালে গুরুত্বপূর্ণ ভূমিকা পালন করা সত্তেও আইনস্টাইন এই বলবিদাার (quantum mechanics) বাস্তবতা স্বীকার করতেন না। তবুও মনে হয় যে মহাবিৰে আমরা বসবাস করি তার একটি মূলগত অবয়ব অনিশ্চয়তার নীতি। সূতরাং আবল্যিক ডাবেই এই নীতিকে একটি সফল ঐকাবদ্ধ তল্পের অন্তর্ভুক্ত করতে হবে।

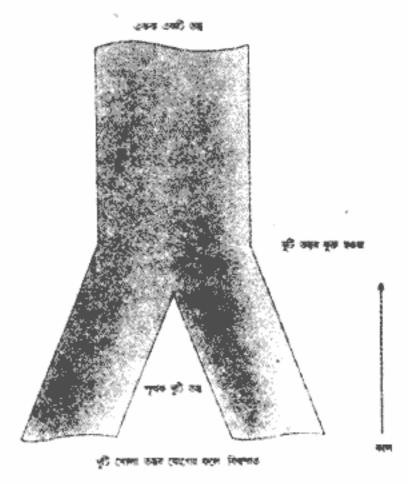

এরকম একটি তত্ত্ব আবিষ্কারের সম্ভাবনা এখন অনেক বেশী, তার কারণ এখন আমরা মহাবিশ্ব সম্বন্ধে অনেক বেশী জানি। এখন আমি এ বিষয়ের বিবরণ দেব কিছু অভিরিক্ত আত্মবিশ্বাস সম্পর্কে আমাদের সাবধান হতে হবে— আগেও এরকম মিধ্যা প্রভাত (false dawn) আমাদের হয়েছে। উদাহরণ: এই শতাব্দীর প্রথমে মনে হয়েছিল অবিভিন্ন প্রার্থের ছিভিস্থাপকতা এবং তাপ পরিবহনের মতো ধর্মের বাশ্বিধিতে সমস্তই ব্যাখ্যা কর। যাবে। পারমাণবিক গঠন এবং অনিশ্চয়তার নীতি আবিষ্কারের ফলে সে আশা সজেরে তেঙে শড়ে। ভারপর আবার ১৯২৮ সালে পদার্থবিদ নোবেল পুরস্কার বিজয়ী ম্যাক্স বর্ণ (Max Born) গয়েটিংগেন বিশ্ববিদ্যালয়ে (Göttingen University) একদল সাক্ষাৎকারীকে বলেছিলেন "আমরা যাকে পদার্থবিদ্যা বলি ছ'মাসেই তার সমাপ্তি ঘটবে"। তাঁর বিশ্বাসের ডিপ্তি ছিল অনতিকাল পূর্বে ডিরাকের (Dirac) আবিষ্কৃত ইলেক্ট্রনের আচরণ নিয়ন্ত্রণকারী সমীকরু। তখন মনে হয়েছিল এরকম আর একটি সমীকরণ প্রোটনের আচরণ নিয়ন্ত্রণ করবে। তখন পর্যন্ত প্রোটনই (proton) ছিল অন্য একটিয়াত্র জানিত কণিকা। সূতরাং এই সমীকরণ জানা হয়ে গেলেই তাত্ত্বিক পদার্থবিদ্যা শেষ হতে। কিন্তু তারপর নিউট্রন এবং কেন্দ্রকীয় বল আবিষ্কার সে আশারও মাধায় আঘাত করে। একথা আমি বলছি, তবুও আমি বিশ্বাস করি— সতর্ক আশাবাদের যুক্তি রয়েছে, আমরঃ হয়তো প্রকৃতির চূড়ান্ত বিধি অনুসদ্ধানের শেষ প্রান্তের কাছাকাছি এসে গিয়েছি।

আগের অধ্যায়গুলিতে আমি ব্যাপক অপেক্ষবাদ, মহাকর্ষের আংশিক তত্ত্ব এবং দুর্বল, সবল ও বিনাৎ-চুম্বকীয় বল নিয়পুণকারী আংশিক তত্ত্বের বিবরণ দিয়েছি। তথাকথিত মহান ঐকাবদ্ধ তত্ত্বে (grand unified theory কিঁয়া GUT) শেষের তিনটির সমন্বয় করা যেতে পারে, তবে এগুলি খুব সম্বোষজনক নয়। তার কারণ মহাকর্ধ তার অন্তর্ভুক্ত নয় এবং বিভিন্ন ঞ্চণিকার আপেক্ষিক ভরের মতো এমন কভকগুলি সংখ্যা সেগুলির ভিতর রয়েছে, যেগুলি তত্ত্বের ভবিষাদ্বাদী থেকে বলা যায় না, পর্যকেলফলের সঙ্গে খাপ খাওয়ার মতো করে বেছে নিতে হয়। মহাকর্ষকে অন্যান। বলের সঙ্গে ঐকাবদ্ধ করা বিষয়ে প্রধান অসুবিধা হল বাাপক অপেক্ষবাদ একটি "চিরায়ত" (classical) তত্ত্ব অর্থাৎ কণাবাদী বলবিদ্যার অনিশ্চয়তার মীতি এর অন্তর্ভুক্ত নয়। অন্যদিকে অন্যান্য আংশিক তত্ত্বগুলি অপরিহার্যভাবে কণাবাদী কণবিদ্যার উপর নির্ভরশীল। সুতরাং প্রথম ধাপ হল ব্যাপক অপেক্ষবাদের সঙ্গে অনিশ্চয়তাবাদের সমন্ত্রয় করা। আমরা দেখেছি এর কয়েকটি উল্লেখযোগ্য ফলশ্রুতি হতে পারে-যেমন কৃষ্ণগহুরগুলি কালো নয়, মহাবিশ্ব শ্বয়ংসম্পূর্ণ তবে কোনো অনন্যতাহীন এবং সীমানাহীন। অসুবিধাটি সপ্তম অধ্যায়ে ব্যাখ্যা করা হয়েছে- অনিশ্চয়তার নীতির অর্থ হল, এমন কি "শূন্য" (empty) স্থানও জ্বোড়া জোড়া কল্পিত কণিকা এবং কল্পিত বিপরীত কণিকায় পূর্ণ। এই জোড়গুলিতে শক্তি থাকবে অসীম, সূতরাং আইনস্টাইনের বিখ্যাত সমীকরণ E = mc² অনুসারে তাদের ভর (mass) হবে অসীম। তাদের মহাক্ষীয় আকর্ষণ মহাবিশ্বকে বক্ষ করে অসীম ক্ষুদ্র আকারে নিয়ে আসবে।

অন্যান্য আংশিক তত্ত্বেও দৃষ্টত অবিশ্বাস্য অনেকটা একইবকম বহু অসীম (infinite)

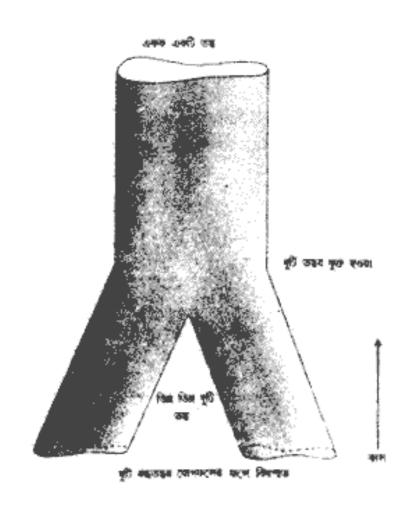
দেখা যায় কিছ পুন: স্বাভাবিকীকরণ পদ্ধতির (renormalization) সাহায্যে এই সমস্ত ক্ষেত্রে অসীমগুলিকে বাতিল করা সন্তব। এ পদ্ধতিতে অন্যান্য অসীম উপস্থিত করে অসীমগুলিকে বাতিল করে হয়। যদিও এই পদ্ধতি গাণিতিকভাবে সন্দেহজনক তবুও কার্যক্ষেত্রে এ পদ্ধতি ফলপ্রদ। এই সমস্ত তন্তে তবিষাধাণী করার জন্য এই পদ্ধতি ব্যবহার করা হয়েছে। এই ভবিষাধাণীগুলির পর্যবেক্ষণের সঙ্গে মিলের নির্ভুলতা অসাধারণ। একটি সম্পূর্ণ তত্ত্ব আবিষ্কারের চেষ্টার দিক থেকে কিন্তু পুন:স্বাভাবিকীকরণ পদ্ধতির একটি গুরুত্বপূর্ণ ত্রুণী আছে। তার ক্ষারণ এর অর্থ: তত্ত্ব থেকে তর এবং বলগুলির শক্তি সম্পর্কে পূর্বাভাস দেওয়া যায় না। পর্যবেক্ষণফলের সঙ্গে খাপ খাওয়ার মতো করে বেছে নিতে হয়।

অনিশ্চয়তার বিধিকে ব্যাপক অপ্শেক্ষবাদের অপ্তর্ভুক্ত করতে হলে মাত্র দৃটি সংখ্যার সক্ষে সমন্ত্র (adjust) করতে হবে: মহাকর্ষের শক্তি এবং মহাবিশ্বতত্ত্বের ধ্রুবকের মূল্যাঞ্চ


हिन्न - ১०.३ अवर हिन्न - ১०.२

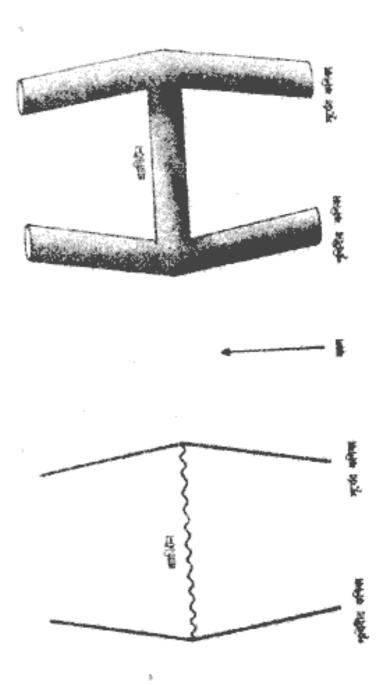
(value of cosmological constant)। কিন্তু এই দুটি সংখ্যার সমন্বয়ই সমস্ত সসীম দূর করার পক্ষে যথেষ্ট ময়। সুতরাং এমন একটি তত্ত্ব পাওয়া গোল যে তত্ত্বে স্থান-কালের বক্রতার মতো কয়েকটি পরিমাণ সম্পর্কে ভবিষাদ্বাদী হল: সেগুলি অসীম কিন্তু এই পরিমাণগুলি

পর্যবেক্ষণ করা এবং মাপা সন্তব। তার ফলে দেখা যায় সেগুলি সসীমি-তাতে বোনোভুল 🗎 🕒 🗎 🖯 নেই। ব্যাপক অপেক্ষবাদ এবং অনিশ্চয়তার নীতির এই সমন্বয়ে এই সমস্যার অস্তিত্ব রয়েছে এরকম সন্দেহ কিছুদিন ধরেই ছিল কিন্ত বিস্তৃত গণনা দ্বারা এ সন্দেহের সভাতা চুড়াস্তভাবে প্রমাণিত হয় ১৯৭২ সালে। চার বছর পর "অতিমহাকর" (supergravity) নারে একটি সম্ভাব্য সমাধান উপস্থিত করা হয়। গ্র্যাভিটন নামে চক্রল-২ কণিকা মহাক্র্যায় বল বছন করে। সম্ভাব্য সমাধ্যনের কল্পন ছিল প্র্যাভিটনের সঞ্চে চক্রণ 😤 , ১, 🛬 এবং ০ বিশিষ্ট ক্ষেকটি নতুন কণিকা সংযুক্ত করা। এক অর্থে এই সমস্ত কণিকাকে একই "অতিকণিকার" (superparticle) বিভিন্ন অবয়ব বলে বিচার করা যায়। এইভাবে ঐক্যবদ্ধ করা যায় চক্রণ 🛬 এবং 😤 পদার্থ কণিকা এবং চক্রল ০, ১ এবং ২ বলবাহী (force carrying) কণিকা। চক্রণ 🛬 এবং 👻 বিশিষ্ট কল্লিড (virtual) কণিকা/বিপরীত কণিকার জোড়ের তাহলে অপরা (negative) শক্তি থাকবে, সূতরাং চক্রল ২, ১ এবং ০ বিশিষ্ট কল্পিড জোড়ের পরা শক্তিকে বাতিল করতে চাইবে। এর ফলে সম্ভাব্য অনেক অসীম বাতিল হয়ে যাবে কিছু সন্দেহ ছিল কিছু অসীম বোধ হয় তখনও খেকে খাবে। কিছু বাতিল না করা কোনো অসীম থেকে গেল কিনা সেই গণনা ছিল এড জটিল এবং দীর্ঘ যে কেউই সে দায়িত্ব নিডে প্রস্তুত ছিল না। গণনায় দেখা গিয়েছিল একটি কমণিউটার ব্যবহার করলেও সময় লাগবে প্রায় চার বছর এবং অন্তত একটি ভূলের সম্ভাবনা থাকবে খুবই বেলী এমন কি তার চাইতে বেলী ভূলের সম্ভাবনাও থাকতে শারে। সূতরাং উত্তরটি ঠিক হয়েছে স্কানতে হলে অন্য একজনকে भनना करत এकर छेउत रंभरल इरव। एम महायनाथ थ्व रवनी हिन ना।


এই সমস্ত সমস্যা এবং অতিমহাকর্ষ তত্ত্বগুলির কণিকার সঙ্গে পর্যবেক্ষণ করা কণিকাগুলির মিল নেই মনে হওয়া সত্ত্বেও অধিকাংশ বৈজ্ঞানিকই বিশ্বাস করতেন অতিমহাকর্মই সম্ভবত পদার্থবিদ্যাকে ঐক্যবদ্ধ করার সমস্যার সঠিক সমাধান। মহারুমকৈ অন্যান্য বলের সঙ্গে ঐক্যবন্ধ করার এটিই মনে হটেছিল সবচাইতে ভাল উপায়। কিছু ১৯৮৪ সালে যে তন্তপ্তলিকে তন্ততন্ত্ৰ (string theories) বলা ইয় সেই তন্তপ্তলির সপক্ষে একটি উল্লেখযোগ্য পরিষর্তন আসে। কণিকাগুলির অবস্থান স্থানে একক একটি বিন্দুতে কিন্তু এই তত্ত্বগুলিতে মূলগত বস্তু (basic objects) কণিকা নয়। এই তত্ত্বের মূলগত বস্তুর দৈর্ঘ্য আছে কিছ অন্য কোনো মাত্রা (dimension) নেই। এগুলি অসীম কৃশ (thin) ভঙ্কর মতো। এই ভঙ্কগুলির তথাকথিত মৃক্ত (open) তম্ভর মতো প্রান্ত (ends) থাকতে পারে কিম্বা নিজের সঙ্গে যুক্ত হয়ে বদ্ধ ফাঁস (loop) হতে পারে (বদ্ধতম্ব) (চিত্র-- ১০.১ এবং ১০.২)। একটি কণিকা কালের প্রতিটি ক্ষণে স্থানের একটি বিন্দু তাধিকার করে থাকে। সূতরাং স্থান-কালে একটি রেখা (বিশ্বরেখা-world line) কণিকার ইতিহাসের প্রতিনিধি হতে পারে। অনা দিকে একটি তম্ভ কালের প্রতিক্ষণে স্থানের একটি রেখা অধিকার করে থাকে। সূতরাং স্থান-কালে এর ইতিহাস একটি দ্বিমাত্রিক শৃষ্ঠ (two dimensional surface) : এর নাম বিস্থপতে (world sheet) (এইরকম একটি বিশ্বপাতের যে কোনো একটি বিন্দুর বিবরণ দেওয়া যায় দুটি সংখ্যা দিয়ে- একটি নির্দেশ করে কাল, অনাটি নির্দেশ করে তন্তর উপর বিদ্যুটির অবস্থান)। একটি মুক্ত তদ্ধব বিশ্বপাত একটি ফালি (strip)। এর কিনারাগুলি তদ্ধর প্রান্তগুলির স্থান-কালের ভিতর দিয়ে পথের প্রতিরূপ (represent) (চিত্র ১০.২)। একটি বদ্ধতম্ভর বিশ্বপাত (world

পদার্থাবদ্যাকে এক্যবন্ধ করা

Fa - 30.0

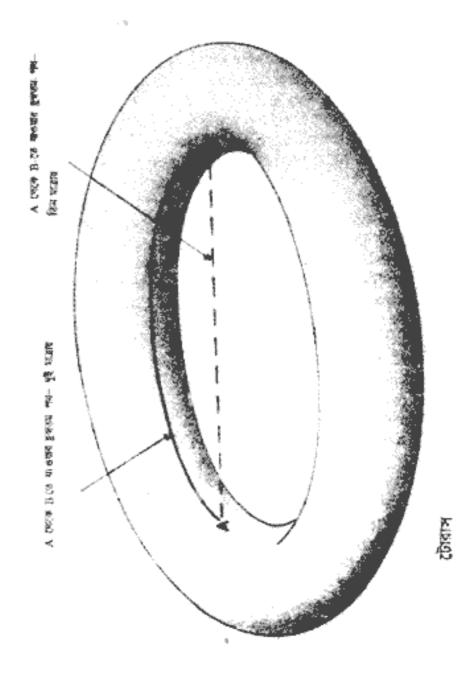

sheet) একটি সিলিন্ডার কিন্তা একটি নল (cylinder or tube) (চিত্র ১০.২)। নলের ফালি (slice) একটি বৃত্ত। সে বৃত্ত একটি বিশেষ কালে তদ্ধর অবস্থানের প্রতিরূপ (represents)।

দৃই খণ্ড তার (string) যুক্ত হয়ে একক একটি তছ গঠন করতে পারে। যুক্ত ভছগুলির ক্ষেত্রে তাদের প্রান্তগুলি শুধুমাত্র যুক্ত হয় (চিত্র- ১০.৩)। আবার বন্ধতছগুলির ক্ষেত্রে ব্যাপারটি অনেকটা পায়জামার দৃটি পায়ের জ্যেড়া লাগার মতো (চিক্র- ১০.৪)। একই ডাবে একখণ্ড তম্ব বিভক্ত হয়ে দুটি তম্ব হতে পারে। আগে যেগুলিকে কণিকা ভাবা হোত আন্ধকাল সেগুলির চিন্রল তম্ব দিয়ে প্রবাহিত তরঙ্গের মতো, এর তুলনা করা যায় যুড়ির সূতো দিয়ে প্রবাহিত তরঙ্গের সঙ্গে। একটি কণিকা থেকে অন্য একটি কণিকা নির্গত হওয়া কিছা একটি কণিকার দ্বারা অন্য একটি কণিকা বিশোষিত হওয়া তছর বিভক্ত হওয়া কিছা যুক্ত হওয়ার অনুরূপ। উদাহরণ: ৃর্যের পৃথিবীর প্রতি মহাক্ষীয় বলের ব্যাখ্যার চিন্ন ছিল সূর্যের একটি ক্ষণিকা থেকে একটি প্র্যান্ডিটন (graviton) নির্গত হওয়া এবং পৃথিবীর একটি কণিকা কর্ম্বক

চিত্ৰ - ১০.৪

কাজের মতো (plumbing))। দুটি H-এর দুটি উল্লম্ব বাছ সূর্য এবং পৃথিবীর কণিকাগুলির অনুরূপ এবং আনুভূমিক (horizontal), আড়াআড়িভাবে অবস্থিত দণ্ড সূর্য এবং পৃথিবীর ভিতরে গমনাগমনশীল গ্র্যাভিটনের অনুরূপ।

ভশ্বতদ্বের ইতিহাস অন্নত। এ তবু ১৯৬০ -এর দশকের শেষ দিকে আবিষ্কৃত হয়েছিল সবল (strong) কল ব্যাখ্যার জন্য একটি তব্ব আবিদ্ধারের চেষ্টার ফলে। চিন্তনটি ছিল: প্রোটন কিয়া নিউট্রনের মতো কণিকাগুলিকে তব্বর উপর তরঙ্গরাপে করনা করা যায়। কণিকাগুলির অন্তর্বতী সবল বলগুলি (strong forces) হবে অন্যান্য তত্বখণ্ডের ভিতর দিয়ে গতিশীল একাধিক তন্তখণ্ডের অনুরূপ— মাকড্সার জালের মতো। এই তব্ব অনুসাবে কণিকাগুলির অন্তর্বতী সবল বলের পর্যবেক্ষণ করা মাপনের সমকক্ষ হতে হলে তদ্বগুলিকে রবার ব্যান্ডের মতো হতে হবে এবং তার আকর্ষণ (pull) হতে হবে দশ টন।



চিত্র - ১০.৫ এবং চিত্র - ১০.৬

১৯৭৪ সালে পারিসের জোল শার্ক (Joë) Scherk) এক কালিফোর্মিয়ার ইনট্টিট্রা Ternet.com অব টেকনোলজির জন শোয়ার্জ (John Schwarz) একটি গবেষণাপত্র প্রকাশ করেন। সেই পত্রে তারা দেখিয়েছিলেন তম্বতন্ত্র মহাকর্ষীয় বলের বিবরণ দিতে পারে শুধুমাত্র যদি তম্বর বিততি (টান- tension) অনেক বেশী হয়- প্রায় এক হাজার মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান (একের পিঠে উনচল্লিশটা শূন্য) টন হয় তাহলে। স্বাভাবিক দৈর্ঘার মানে ভন্ততত্ত্ব একং ব্যাপক অপেক্ষবাদের ভবিষাছাণী একেবারেই অভিন হবে কিছ পার্থকা হবে অতাস্ত স্বল্প দূরতে অর্থাৎ এক সেন্টিমিটারের এক হাজার মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান ভাগের এক ভাগের কম হলে (এক সেন্টিমিটারকে একের পিঠে তেক্রিশটি শুনা দিলে যে সংখ্যা হয় সেটি দিয়ে ভাগ করলে)। কিন্তু তাঁদের গবেষণা বিশেষ মনোযোগ আকর্ষণ করেনি, তার কারণ প্রায় সেই সময়ই অধিকাংশ লোক সবল বলৈর সপক্ষে মূল ভন্নভন্ত পরিত্যাগ করেন। তাঁরা সমর্থন করেন কার্ক (quark) এবং গ্রয়ন (Gluon) ভিত্তিক তত্ত্ব। মনে হয়েছিল পর্যক্ষেপের ফলের সঙ্গে এই তত্ত্বেরই সামঞ্জস্য বেলী। লার্কের মৃত্যুর ব্যাপারটি বড়ই দুঃখের (জাঁর ডায়াবেটিস অর্থাৎ মধুমেই ছিল। তিনি অন্ধান হয়ে যান- অর্থাৎ তাঁর হয় ডায়াবেটিক কোমা। তাঁকে ইনসুন্সিন ইঞ্কেশন দেওয়ার মতো কেউ ক্ষাকাছি ছিল না)। সূতরাং শোয়ার্জ একলা পড়ে গেলেন। বোধহয় তিনিই ছিলেন তম্বতন্তের একমাত্র সমর্থক কিছ তখন তম্বর প্রস্তাবিত বিততির মান অনেক বেশী।

১৯৮৪ সালে তন্তর উপর আকর্ষণ হঠাৎ পুনরুজীবিত হয়। আপাতদৃষ্টিতে তার কাবণ ছিল দুটি। একটি ছিল: অতিমহাকর্ষ সীমিত কিয়া আমরা যে কণিকাগুলি পর্যবেক্ষণ করি সেগুলি অতিমহাকর্ষ ব্যাখ্যা করতে পারে: এই দুটি বিষয় প্রদর্শনের ব্যাপারে আসলে কোনো অপ্রগতি হয়নি। অন্য কারণ ছিল: লগুনের কুইন মেরী কলেজের জন শোয়ার্ড (John Schwarz) এবং মাইক শ্রীন (Mike Green) একটি গবেষণাপত্র প্রকাশ করেন। এই গবেষণাপত্রে দেখানো হয়েছিল তন্ততন্ত্ব হয়তো আমরা যে কণিকাগুলি পর্যবেক্ষণ করি সেগুলির তিতরে যেগুলির গঠনগতভাবে বামমুখীতা আছে (built-in left-handedness) সেরক্ষম কণিকার অন্তিত্ব ব্যাখ্যা করতে পারবে। কারণ যাই হোক না কেন, অনতিবিলম্বে অনেকেই তন্ত্ব নিয়ে গবেষণা করতে থাকেন এবং এ তত্ত্বের একটি নতুন রূপ বিকাশ লাভ করে—তার নাম তথাকথিত হেটারোটিক তন্ত্ব (heterotic string)। মনে হয়েছিল এ তন্ত্ব আমাদের পর্যবেক্ষণ করা বিভিন্ন ধরনের কণিকা হয়তো ব্যাখ্যা করতে পারবে।

ভত্তব্বস্তলিও অসীমের পূর্বগামী কিছ মনে হয় হেটারোটিক তছর মতো বাছিবিতে এ তত্ত্বে সমস্ত অসীমই বাতিল হয়ে যাবে (যদিও এ বাাপারটা এখনও নিশ্চিতভাবে জানা যায় না)। কিছ ভত্তপ্রলির একটি বৃহস্তর সমস্যা বয়েছে: তছ তত্ত্বপ্রলি সামপ্রস্যপূর্ণ হবে শুধুমাত্র যদি সাধারণ চারমাত্রা না থেকে ছান-কালের দল কিছা ছাবিবল মাত্রা থাকে। অবলা বৈজ্ঞানিক কল্লকাহিনীতে ছান-কালের অতিরিক্ত মাত্রা হামেশাই দেখা যায়। আসলে এই অতিরিক্ত মাত্রা এই কাহিনীগুলির প্রয়োজনীয় উপাদানের ভিতর প্রায় এসে যায়। অপোক্তবাদের অন্তর্নিহিত অর্থ: আলোকের চাইতে ক্রাক্তাতিতে গ্রমনাগ্রমন সন্তব্ধ নয়। স্তর্যাং অতিরিক্ত

চিত্ৰ - ১০.৭

পদার্থবিদ্যাকে ঐক্যবন্ধ করা

মাত্রা না থাকলে তারকা এবং নীহারিকান্ডলিতে যাতায়াত করতে বড় বিশী সময় লাগনৈ। 1101101.0011

বৈজ্ঞানিক কল্পকাহিনীগুলির চিন্তাধারা হল: হয়তো উচ্চতর মাত্রা (dimension) দিয়ে একটি সহজ হুস্থ পথ (short cut) পাওয়া যেতে পারে। ব্যাপারটা কল্পনা করা যেতে পারে নিয়লিখিত জপে: মনে কল্পনা যে হানে আমরা বসবাস করি তার মাত্র দৃটি মাত্রা আছে এবং সেটি নোগুর ফেলার আটো কিল্পা টোরাসের (torus) পৃষ্টের মতো বন্ধিম (চিত্র - ১০.৭)। আপনি যদি আটোর ভিতর নিকের কিনারার একপাশে থাকেন এবং অনাদিকের কোনো এক বিন্দৃতে যেতে চান তাহলে আপনার আটোর ভিতরের কিনারা দিয়ে ঘুরে যেতে হবে কিছু আপনার যদি তৃতীয় মাত্রায় (third dimension) শুমণ সম্ভব হয় তাহলে আপনি সোজাসুজি অন্যদিকে যেতে পারেন।

290

এই সমস্ত অতিরিক্ত মাত্রার অক্তিত্ব যদি বাস্তব হয় তাহলে কেন সেগুলি আমাদের নম্বরে আন্দে না ? কেন আমরা শুধুমাত্র স্থানের তিনটি এবং কালের একটি মাত্রা দেখতে পাই ? ইন্সিডটি হল : অন্য মাত্রাগুলি বক্র হয়ে অত্যন্ত ক্ষুদ্র আয়তনের স্থানে রয়েছে। সেই কানের আয়তন প্রায় এক ইঞ্চির এক মিলিয়ান, মিলিয়ান, মিলিয়ান, মিলিয়ান ভাগের এক ভাগ। এগুলি এত ক্ষুদ্র যে আমাদের নম্করেই আসে না। আমরা দেখতে পাই শুধুয়াত্র একটি কালিক এবং তিনটি ছানিক মাত্রা-- সেক্ষেত্রে স্থান-কাল যথেষ্ট মসুণ (fairly flat)। এটা প্রায় একটি কমলালেবুর বাইরের দিকটির মতো– কাছে থেকে দেখলে সবটাই বঙ্কিম এবং কৃঞ্জিত কিছা দুর খেকে দেখলে উঁচু নিচু দেখতে পাওয়া যায় না; মনে হয় মসুণ। স্থান-কালের ব্যাপারটাও সেইরকম— অভাস্ত ক্ষুদ্র মাত্রায় দেখলে দল মাত্রিক এবং অভাস্ত বৃদ্ধিয় কিন্তু বৃহত্তর মাত্রায় বক্রতা কিম্বা অভিরিক্ত মাত্রা দেখতে পাওয়া যায় না । এই চিত্রন সঠিক হলে সেটা হবু মহাকাশচারীদের কাছে একটি দুঃসংবাদ: অতিরিক্ত মাত্রাগুলি এড বেশী ক্ষুদ্র যে মহাকাশযান তার ভিতর দিয়ে খেতে পারবে না। কিছু এই ব্যাপারটা আর একটি বৃহৎ সমস্যা উত্থাপন করছে। সব কটি মাত্রা না হয়ে শুধু কয়েকটি মাত্র মাত্রা কেন বঞ্জ হয়ে ক্ষুদ্র গোলকের আকার ধারণ করবে? বোধ হয় মহাবিশ্বের অভি আদিমকালে সমস্ত মাত্রাই অত্যন্ত বক্র ছিল। কিছু কেল একটি কালিক মাত্রা এবং তিনটি স্থানিক মাত্রা সমতল হয়ে গেল অখচ অন্য মাত্রাগুলি কঠিন ভাবে বব্রু হয়ে রইল?

একটি সন্তাব্য উত্তর নরত্বীয় নীতি। দৃটি ছানিক মাত্রা আমাদের মতো জটিল জীব বিকালের পক্ষে যথেষ্ট মনে হয় না। উদাহরণ: যদি ছিমাত্রিক জীবরা এক মাত্রিক পৃথিবীতে বাস করে তাহলে অন্য কাউকে অতিক্রম করতে হলে তাদের অন্য জন্তুটির গায়ের উপর উঠে পার হতে হবে। দ্বিমাত্রিক জীব যদি এমন কিছু খায় যা সে সম্পূর্ণ হজম করতে পারবে না তাহলে খাদেরে অবশিষ্টাংশ (মল - অনুবাদক) তাকে যে মুখে সে খেয়েছে সেই মুখ দিয়েই বের করে দিতে হবে। যদি দেহের ভিতরে এক প্রান্ত খেকে অন্য প্রান্ত পর্যন্ত পথ থাকে তাহলে জন্তুটি দৃ'ভাগে ভাগ হয়ে যাবে। আমাদের দ্বিমাত্রিক জীব ভেঙে পড়বে। (চিত্র—১০.৮) একইভাবে বলা যায় একটি দ্বিমাত্রিক জীবের রক্ত চলাচল কিভাবে হবে বোঝা কঠিন।

हिन्द - ३०.४

विवाहिक क्रीव

তিনটির বেশী হানিক মাত্রা হলেও সমস্যা দেখা দেবে। দুটি বন্তুপিশুের দূরত্বের বৃদ্ধির সঙ্গে অন্তর্বতী মহাকর্ষ বলের হ্রাসপ্রাপ্তি ত্রিমাত্রিক হানে মহাক্ষীয় বলের ঐ অবস্থায় হ্রাসপ্রাপ্তির তুলনায় অনেক বেশী হবে (দূরত্ব দ্বিগুণ হলে ত্রিমাত্রিক হানে মহাক্ষীয় বল হ্রাসপ্রপ্তির তুলনায় অনেক বেশী হবে (দূরত্ব দ্বিগুণ হলে ত্রিমাত্রিক হানে মহাক্ষীয় বলের হ্রাসপ্রাপ্তি এভাবেই চলতে থাকে)। এই তব্যের অর্থ হল: পৃথিবী এবং অনান্য প্রহের সূর্যের প্রদক্ষিণ করার কক্ষের হিরত্ব হ্রাসপাবে অর্থাৎ কৃত্তাকার কক্ষের সামান্যতম অন্থিরতা হলে (অন্যান্য প্রহের মহাক্ষীয় আকর্ষণের ফলে যা হতে পারে) পৃথিবী সর্পিল গতিতে হয় সূর্য থেকে দূরে সরে যাবে নয়তো সূর্যের ভিতরে গিয়ে পড়বে। ইয় আমরা ঠাঙায় দ্ধমে যাব নয়তো পূড়ে যাব। আসলে তিনটির অধিক মাত্রা হলে দূরত্ব সাপেক্ষ মহাকর্ষের ঐ একই আচরণের অর্থ হবে চালের সঙ্গে মহাকর্ষের ভারসায়োর ফলে সূর্য যে দ্বির অবস্থায় থাকে সেই দ্বির অবস্থায় আর থাকতে পারকে না। হয় টুকরো টুকরো হয়ে যাবে নয়তো চুপসে কৃষ্ণগহ্বে পরিণত হবে। যাই হোক না কেন পার্থিব জীবনের আলোক এবং তাপের উৎস হিসাবে সূর্য আর কোনো কাছে পাগরে না।

ব্দুপ্রতর মানে বিচার করলে যে বৈদ্যুতিক বল ইলেক্ট্রনগুলিকে পরমাণুর কেন্দ্রক্রেক সাবর্তন করে ঘূর্ণায়মান রাখে সেই বলের আচরণও মহাক্ষীয় বলের মতো হবে। ফলে হয় ইলেক্ট্রনগুলি পরমাণু থেকে সম্পূর্ণ মুক্ত হয়ে পরমাণু থেকে নির্গত হবে কিম্বা সর্পিল গতিতে কেন্দ্রকে পতিত হবে। ঘাই হোক না কেন, যে পরমাণুকে আমরা চিনি সে পরমাণু আর আমরা পাব না।

সুতরাং স্পষ্টতই যনে হয় হান-কালের যে সমস্ত অঞ্চলে একটি কালিক এবং তিনটি হানিক মাত্রা কুঞ্চিত হয়ে কুন্ত হয়ে যায় নি একমাত্র সেই সমস্ত অঞ্চলেই প্রাণ অর্থাৎ আমরা প্রাণ বলতে যা বুঝি সেই রকম প্রাণের অন্তিত্ব সন্তব। এর অর্থ হবে দুর্বল নরত্বীয় মীতির আার্য নেওয়া যেতে পারে তবে সে ক্ষেত্রে এ তন্ততন্ত্ব যে অন্ততপক্ষে মহাবিশ্বে ঐরকম অঞ্চলের অন্তিত্ব অনুমোদন করে সেটি দেখাতে হবে— মনে হয় তন্ততন্ত্ব এরকম অনুমোদন করে। মহাবিশ্বের অন্যান্য এরকম অঞ্চল কিন্তা এমন একাধিক মহাবিশ্ব (তার অর্থ যাই হোক না কেন) থাকার যথেন্তই সন্তাবনা রযেতে, যেখানে সমস্ত মাত্রাই কুঞ্চনের ফলে কুন্ত কিন্তা যেখানে চারটি মাত্রাই প্রায় সমতল (flat), কিন্তু সেই সমস্ত অঞ্চলে বিভিন্ন সংখ্যক কার্যকর মাত্রাগুলি পর্যবেক্ষণ করার মতো বুদ্ধিমান ক্ষীব থাকবে না।

শ্বান-কালের প্রতীয়মান মাত্রার সংখ্যার প্রশ্ন ছাড়াও তম্বতত্ত্বের আরো অনেকগুলি সমস্যা রয়েছে। তম্বতত্ত্ব পদার্থবিদার চূড়ান্ত ঐক্যবদ্ধ তন্ত্বদ্ধপে ঘোষিত হওয়ার আগে এই সমস্যাগুলি সমাধান করতে হবে। আমরা এখনও জানি না সমস্ত অসীম পরস্পরকে বাতিল করে কিলা। আমাদের পর্যবেক্ষণ করা বিশেষ ধরনের কণিকার সঙ্গে তম্বর উপরের তরঙ্গুলিকে কিভাবে সম্পর্কিত করতে হবে তাও আমরা জানি না। তবুও এই প্রশ্নগুলির উত্তর আগামী কয়েক বছরের ভিতরে পাওয়া যাবে বলে মনে হয় এবং এ শতান্দীর শেষাশেষি আমরা জানতে পারব তম্বতন্ত্ব সতিটি বহু আকাঞ্জিকত পদার্থবিদ্যার ঐক্যবদ্ধ তন্ত্ব কি না।

কিন্তু এরকম ঐক্যবদ্ধ তত্ত্ব থাকা কি সত্তিই সন্তব ? না কি আমরা শুধুই মরীচিকার পিছনে ছুটছি ? তিনটি সন্তাবনা আছে বলে মনে হয় :

- (১) একটি সম্পূর্ণ ঐক্যবদ্ধ তত্ত্ব সন্তিটে রয়েছে এবং আমরা যথেষ্ট বৃদ্ধিমান হলে কোনো না কোনোদিন সে তত্ত্ব আবিষ্কার করতে পারব।
- (২) মহাবিশ্ব সম্পর্কে চূড়াস্ত কোনো তত্ত্ব নেই। শুধু রয়েছে বহু তত্ত্বের অসীম পরম্পারা, সে তন্তপ্রশি ক্রমণই অধিকতর নির্ভুলভাবে মহাবিশ্বের বিবরণ দান করে।
- (৩) মহাবিশ্বের কোনো তত্ত্ব নেই। একটি বিশেষ সীমার বাইরে ঘটনাকলী সম্পর্কে কোনো ভবিষাদ্বাদী করা যায় না। ঘটনাগুলি ঘটে যাদৃচ্ছিক ভাবে, এলোমেলো ভাবে।

ভানেকে হ্যাতো তৃতীয় সন্তাবনার সপক্ষে বলবেন। তাঁদের যুক্তি, এরকম সম্পূর্ণ এক কেতা বিধি থাকলে সেগুলি ইশ্বরের নিজের মনের পরিবর্তন করে বিদ্বে হস্তক্ষেপ করার স্বাধীনভায় হস্তক্ষেপ করত। এ ব্যাপারটি অনেকটা সেই প্রচীন স্ববিরোধিতার মতো: ইশ্বর কি এমন একটি পাথর তৈরী করতে পারেন যেটা এত ভারী যে তিনি নিজেই সেটা তুলতে পারেন না ? ইশ্বর তাঁর মনের পরিবর্তন করতে চাইতে পারেন এই চিন্তাধারা একটি হেত্বাভাসের

(fallacy) ট্রিছরণ। এদিকে প্রথম দৃষ্টি আকর্ষণ করেছিলেন সেন্ট অগাস্টিন (Saint Augustine)। এই হেত্বাভাসটি হল ইশ্বর কালে অবস্থান করেন এই কল্পন। আসলে ঈশ্বর যে মহাবিশ্ব সৃষ্টি করেছেন কাল তার একটি ধর্ম মাত্র। অনুমান করা যেতে পারে তিনি যখন মহাবিশ্ব সৃষ্টি করেছেন তখন নিজের মনের বাসনা তার জানা ছিল।

কণাবাদী বলবিদ্যার (quantum mechanics) আবির্ভাবের পর আমরা মেনে নিয়েছি
সম্পূর্ণ নির্ভুলভাবে ঘটনাবলী সম্পর্কে ভবিষাদ্বাদী করা যায় না এবং কিছু মাত্রায় অনিশ্চয়তা
সব সময়ই থাকে। পছল হলে এলোমেলো অনিশ্চয়তার দায়িত্ব ঈশ্বরের ইস্তক্ষেপের উপর
আরোপ করা যেতে পারে। কিন্তু এই হস্তক্ষেপ হবে অত্মৃত, কারণ এই হস্তক্ষেপ
কোনো উদ্দেশোর অভিমূপে এরকম প্রমাণ নেই। যদি থাকত তাহলে সংজ্ঞা অনুসারেই একে
এলোমেলো বলা যেত না। আধুনিক যুগে আমরা উপরে উল্লিখিত তৃতীয় সম্ভাবনাটি কার্যকর
ভাবে দূর করেছি। এ সম্ভাবনা দূর করেছি বিজ্ঞানের উদ্দেশ্য নতুনভাবে নির্দেশ করে: বিজ্ঞানের
উদ্দেশ্য এমন এক কেতা বিধি গঠন করা যে বিধি আমাদেব অনিশ্চয়তার নীতি ছারা নির্ধারিত
সীয়া অবিধি ভবিষান্থাণী করার ক্ষমতা দান করবে।

দ্বিতীয় সম্ভাবনা হল সংখ্যায় অসীম তত্ত্ব পরম্পরা রয়েছে এবং সে তত্ত্বগুলি ক্রমশই অধিকতর সংস্কৃত (refined) হয়ে চলেছে। এর সপক্ষে আমাদের এ পর্যন্ত সঞ্চিত সমস্ত অভিজ্ঞতার ঐক্য রয়েছে। অনেক সময় আমরা নিজেদের মাপনের সৃক্ষতা (sensitivity) রাড়িয়েছি কিম্বা নতুন শ্রেণীর পর্যবেক্ষণ করেছি, ফলে আবিদ্ধৃত হয়েছে নতুন এমন পরিঘটনা যেগুলি বর্তমান তত্ত্বের ভবিষাদ্বাণীতে নেই। এই পরিঘটনাগুলি ব্যাখ্যা করার জন্য আমাদের আবিষ্কার করতে হয়েছে অধিকতর অগ্রগামী তত্ত্ব। আধুনিক প্রজন্মের বৃহৎ ঐক্যবদ্ধ তত্ত্বের দাবী: প্রায় ১০০ GeV এর বৈদ্যুতিক দুর্বল (electroweak) ঐক্যকারী শক্তি (unification energy) এবং এক হাজার মিলিয়ান মিলিয়ান GeV এর বৃহৎ ঐক্যকারী শক্তির (grand unified energy) মধ্যবতী অঞ্চলে নতুন কিছু ঘটবে না। এ দাবী যদি তুল হয় তাহলে বিশ্বিত হওয়ার কিছু থাকবে না। যে কার্ক (quark) এবং ইলেক্ট্রনকে আমরা এখন মৌলকণা বলে মনে করি, সত্তিই হয়তো আমরা তার চাইতে মূলগত গঠনের কয়েকটি নতুন স্তর আবিষ্কার করতে পারি।

কিন্তু মনে হয় "বাস্তের ভিতরে বাজের" এই পরস্পরাকে দীমিত করতে পারে মহাকর্য।
যদি কোনো কণিকার শক্তি, যাকে প্লান্ত শক্তি বলে, ভার চাইতে অর্থাৎ দশ মিলিয়ান, মিলিয়ান,
মিলিয়ান GeV (একের পিঠে উনিশটি শ্র্না) এর চাইতে বেশী হয় তাহলে ভার ভর এত
ঘনীতৃত (concentrated) হবে যে সে নিজেকে অর্থান্ত মহাবিদ্ধ থেকে বিচ্ছিন্ন করে একটি
ক্ষুদ্র কৃষ্ণগহরে পরিণত হবে। সূত্রাং অবশাই মনে হয় আমাদের উচ্চ থেকে উচ্চতর শক্তিতে
গমনের ফলে ক্রমণ অধিকতর সংস্কৃত (refined) তত্ত্বের এই পরস্পরা দীমিত হওয়া উচিৎ
এবং ভাহলে উচিৎ মহাবিদ্ধ সম্পর্কে একটি চূড়ান্ত তত্ত্বের অক্তিই থাকাও। বর্তমানে আমরা
গবেষণাগারে খুব বেশী হলে ১০০ GeV-এর কাছাকাছি শক্তি উৎপাদন করতে পারি। এই
পরিয়াণ শক্তির সঙ্গে প্লান্ধ শক্তির পার্থকা অবশা বিরাট। নিকট ভবিষ্যতে আমরা কণিকা

ত্বন যক্ষের সাহায়েও এই পার্থকা দূর করতে পারব না। কিন্ত মহাবিশ্বের অতি আদিম অবস্থা এমন একটি ক্ষেত্র (arena) যেখানে এরকম শক্তির অক্তিত্ব ছিল। আমার মনে হয় আমাদের ভিতরভার কয়েকজনের জীবন কালের ভিতরেই আদিম মহাবিশ্ব বিষয়ক গবেষণা এবং গাণিতিক সামগ্রসার প্রয়োজনীয় উপাদানের সম্পূর্ণ ঐকাবদ্ধ তত্ত্বের পথিকৃৎ হওয়ার খুবই সম্ভাবনা রয়েছে। অবশ্য অনুমান করছি তার আগে আমরা নিজেদের সামগ্রিক ধ্বংস ভেকে আনব না।

য়দি সভিাই আমরা মহাবিশ্ব বিষয়ক চূড়ান্ত তত্ত্ব আবিষ্কার করি তাহলে তার অর্থ কি ছবে ? প্রথম অধ্যায়ে ব্যাখ্যা করা হয়েছিল— এ বিষয়ে আমরা কখনোই নিশ্চিত হতে পারব না যে আমরা সতিইে সঠিক ভত্ত্ব আবিষ্কার করেছি, তার কারণ তত্ত্ব প্রমাণ করা যায় না। কিছ তত্ত্বটি যদি গাণিতিক ভাবে সামঞ্জসাপূর্ণ হয় এবং সবসময়ই যদি সৈ তত্ত্বের ভবিষাদ্বাণীর সঙ্গে পর্যবেক্ষণের ঐক্য দেখা যায় তাহলে আমরা সঠিক তত্ত্ব আবিষ্কার করেছি এরকম বিশ্বাস করা যুক্তিসঙ্গত হবে। এই আবিষ্কার মহাবিশ্বকে বুঝবার প্রচেষ্টায় মানব জাতির বৌদ্ধিক সংগ্রামের দীর্ঘ এবং গৌরবময় অধ্যায়ের পরিসমান্তি ঘটাবে। তাছাড়া এই আবিষ্কার সাধারণ মানুষের মহাবিশ্বের শাসনবিধি সম্পর্কিত বোথেও বিপ্লব নিয়ে আসবে। নিউটনের সময় একজন শিক্ষিত লোকের গক্ষে মানবজাতির সমগ্র জ্ঞান ভাগুরে সম্পর্কে একটি ধারণা থাকা সম্ভব ছিল, অন্ততপক্ষে সম্ভব ছিল সে ধারণার সাধারণ রূপরেখা (outline) সম্পর্কে ধারণা করা। কিন্ত ভার পর থেকে বিজ্ঞানের বিকাশের গতির ফলে এরকম সম্ভাবনা আর নেই। নতুন নতুন শর্যবেক্ষণ ফলের কারণ দর্শানোর জন্য তত্ত্বগুলি সব সময়েই পরিবর্তিত হচ্ছে। সে তত্ত্বগুলি সাধারণ মানুষের বুঝবার মতো করে সচিকভাবে হন্ধম হয় না, সরলীকৃতও হয় না। বুঝতে ছলে আগনাকে বিশেষজ্ঞ হতে হবে। কিছু তা হলেও বৈজ্ঞানিক তত্ত্বগুলির অতি সামান্য অংশ সম্পর্কেই সমাক জ্ঞানের আশা আপনি করতে পারেন। তাছাড়া বিকাশের গতি এত ফ্রন্ড যে স্কুলে আর বিশ্ববিদ্যালয়ে যা লেখানো হয় সেগুলি সবসময়ই একটু সেকেলে। জ্ঞানের হ্রুত অগ্রসরমান সীমান্তের সঙ্গে সামান্য কয়েকজনই তাল রাথতে পারেন কিন্তু তাঁদেরও সমস্ত সময় বায় করতে হয় এই কাজে এবং তাঁদের বিশেষজ্ঞ হতে হয় একটি ক্ষুদ্র বিষয়ে। যে অগ্রগতি হছে অথবা অগ্রগতির ফলে যে উত্তেজনা সৃষ্টি হচ্ছে জনগণের অবশিষ্ট অংশের সে সম্পর্কে ধারণা থাকে জতি সামান্য। এডিংটনকে যদি বিশ্বাস করা যায় তাহলে ক্লতে হয় সপ্তর বছর আগে ব্যাপক অপেক্ষবাদ বুকতেন মাত্র দু'জন। এখনকার দিনে বহু অযুত (দশ হাজার) কিশ্ববিদ্যালয়ের স্নাতক এই তথ্য বোঝেন এবং বহু নিযুত (মিলিয়ান- দশ লক্ষ) মানুষের এই চিন্তন সম্পর্কে অন্ততপক্ষে একটি ধারণা আছে। যদি সম্পূর্ণ ঐক্যবদ্ধ তত্ত্ব আবিষ্কার হয় তাহলে কালে কালে সে তত্ত্ব হজমও হবে আর সরলীকৃতও হবে একং স্থুলেও পড়ানো হবে। অস্ততপক্ষে তার রূপরেখা তো পড়ানো হবেই। যে বিধি মহাবিশ্ব শাসন করে এবং আমাদের অক্তিভের জন্য দায়ী, আমরা সবাই সে বিধিগুলির কিছু কিছু বুঝতে পারব।

যদি আমরা সম্পূর্ণ ঐক্যবদ্ধ তত্ত্ব আবিষ্কারও করি তাহলে তার অর্থ এই হবে না

হয় সাধারণভাবে আমরা ঘটনাগুলি সম্পর্কে ভবিযাত্বাণী করতে পারব। তার দৃটি কারণ। প্রথম কারণ কণাবাদী বলবিদ্যা আমাদের ভবিষ্যত্বাদী করার ক্ষমতার উপর একটি সীমা আরোপ করে। এই সীমা অতিক্রম করার কোনো উপায় আমাদের নেই। কার্যক্ষেত্রে কিছ এই প্রথম গণ্ডি (সীমা) দ্বিতীয় গণ্ডির চাইতে কম অনতিক্রমা। দ্বিতীয় গণ্ডির উৎস একটি সজ(fact) । সেই সত্য অনুসারে খুব সহজ সরল পরিস্থিতি ছাড়া কোনো পরিস্থিতিতেই আমরা নির্ভুলভাবে সমীকরণগুলির সমাধান (solve the equation) করতে পারিনি (এমন কি আমরা নিউটনের মহাক্ষীয় তত্ত্ব অনুসারে তিনটি বস্তুপিণ্ডের গতি সম্পর্কীয় সমীকরণ নির্ভুলভাবে সমাধান করতে পারি না, বস্তুপিক্তের সংখ্যা এবং তত্ত্বের জটিনতা বৃদ্ধির সঙ্গে সমাধানের অসুবিধাও বৃদ্ধি পায়)। অত্যন্ত চরম পরিস্থিতি ছাড়া অন্যান্য সমস্ত পরিস্থিতিতেই পদার্থের আচরণ নিয়ন্ত্রণকারী বিধিগুলি আমাদের এখন জানা। বিশেষ করে আমরা জানি সম্পূর্ণ রসায়ন শা**ন্ত এক্ জীববিজ্ঞানের** মৌলিক বিধিগুলির ভিত্তি। তবুও আমরা এই বিষয়গুলিকে সমাধান করা সমস্যার স্তরে নিশ্চমাই নামিয়ে আনতে পারিনি। এখন পর্যন্ত গাণিতিক সমীকরণের সাহায়ে মানবিক আচরণ সম্পর্কে ভবিষ্যদ্বাণী করার ব্যাপারে আমাদের সামানাই সাফলা হয়েছে। সুতরাং যদি আমরা সম্পূর্ণ এক কেতা বিধি আবিষ্কারও করি তাহলেও তার পরবর্তী কালের জন্য থেকে যাবে আমাদের বুদ্ধিকে স্বন্ধুদ্ধে আহ্বান করার মতো কর্মের দায়িত্ব। সে কর্ম হল জটিল এবং বাস্তব শরি**ন্থিতিগুলির** সম্ভাব্য ভবিষাৎ সম্পর্কে কার্যকর ভবিষাদ্বাণী করার ক্ষমতা লাভের জন্য উন্নততর আসন্নতা (approximation) লাভের পদ্ধতি আবিষ্কার (better approximation methods) । একটি সম্পূর্ণ সামগুসাপূর্ণ ঐকাবদ্ধ তত্ত্ব শুধুমাত্র প্রথম ধাপ : আমানের চূড়ান্ত উদ্দেশ্য হল : আমানের নিজস্ব অস্তিত্ব এবং আমাদের সর্বপার্শ্বের ঘটনাবলী সম্পূর্ণ বোঝা।

33 lainternet

উপসংহার

(Conclusion)

আমরা দেখতে পাই একটি বিপ্রান্তিকর জগতে আমাদের বাস। আমাদের স্বাদিকে আমরা যা দেখতে পাই আমরা চাই তার একটি অর্থ খুঁজতে আর প্রশ্ন করতে চাই: এই মহাবিশ্বের ধর্ম (nature) কি? এখানে আমাদের হান কি? কোথা থেকে এটা এল? আমরাই বা এলাম কোথা থেকে? পৃথিবীটা যেমন, ডেন তেমন হল?

এই সমস্ত প্রস্তের উত্তর দেওয়ার জন্য আঘরা একটি "বিশ্বনিত্র" (world picture) গ্রহণ করি। বহু কচ্ছপ নিয়ে তৈরী অসীম উজ একটি স্তম্ভের উপর সমতল পৃথিবী খাপিত রয়েছে যেমন, সেরকম একটি নিত্র, অভিতম্ব (super string) তত্ত্বও তেমনি একটি নিত্র। দুটিই মহাবিশ্ব বিষয়ক তত্ত্ব তবে প্রথম তত্ত্বনির তুসনায় শেষেরটি অনেক যেশী গাণিতিক এবং স্পষ্টরূপে নির্দিষ্ট (precise)। দুটি তত্ত্বের কোনোটির সপক্ষেই পর্যক্ষেণলব্ধ সাক্ষানেই; বিরাট একটি কচ্ছপ পৃথিবীকে পিঠে করে রয়েছে এরকম কেউ কখনো দেখেনি কিছ একটি অভিতন্ত্বও কেউ দেখেনি। তবে কচ্ছপতত্ত্ব একটি উরম বৈজ্ঞানিক তত্ত্ব হয়ে উঠতে পারেনি, তার কারণ এ তত্ত্বের ভবিষাত্বাণী অনুসারে পৃথিবীর কিনারা থেকে পড়ে যাওয়া সম্ভব। এ ভবিষাত্বাণীর সঙ্গে অভিজ্ঞতা মেলেনি অফলা যাঁরা বারমুড়া ক্রিভুজে (Bermuda Triangle) অভুলা হয়েছেন যদে অনুমান করা হয় তাঁদের সেই অভুলা হওয়ার ব্যাখ্যা যদি পৃথিবীর কিনারা থেকে পড়ে যাওয়া নার্যার থেকে পড়ে যাওয়া নার্যারা থেকে পড়ে যাওয়া নার্যার যাওয়া নার্যারা থেকে পড়ে যাওয়া নার্যারা থেকে পড়ে যাওয়া নার্যার যাওয়া নার্যার যাওয়া নার্যারা থেকে পড়ে যাওয়া নার্যার যাওয়া নার্যার যাওয়া নার্যার যাওয়া নার্যার বিদ্ধানার প্রার্যার যাওয়া নার্যার হার্যার বিদ্ধানার হার।

মহাবিশ্বের বিধরণ দেওয়া এক মহাবিশ্বকে ব্যাখ্যা করার প্রচীনতম প্রচেষ্টা ছিল যে
চিস্তাধারা— সে চিস্তাধারা অনুসারে ঘটনাবলী এক স্বাভাবিক পরিঘটনা কয়েকটি সতার (spirit)
নিমন্ত্রশে। তাদের ভাবাবেশ ছিল মানুবেরই ঘতো এবং মানুবেরই মতো ছিল তাদের ক্রিয়াকর্ম।
তাদের সে ক্রিয়াকর্ম সম্পর্কে ভবিষাদ্বাদী করা ছিল অসন্তব। এই সতাগুলি নদী, পাহাড়,

অন্তরীক্ষের বন্ধপিশু (celestial bodies) ইতাদি স্বাভাবিক বস্ততে অধিনান করিতেন এর ভিতরে চন্দ্র সূর্যন্ত ছিল। শতুর আবর্তন এবং জমির উর্বরতা নিশ্চিত করার জনা তাঁদের শান্ত করা এবং তাঁদের আনুকূলা ভিক্লা করা প্রয়োজন ছিল। কিন্ত ক্রমণ নিশ্চয়ই লক্ষা করা গিয়েছিল কিছু কিছু নিয়মের অন্তিত্ব। যেমন: সূর্য সবসময়ই পূর্ব দিকে ওঠে এবং পশ্চিম দিকে অন্ত যায়। সূর্যদেবতাকে পূজা করা হোক কি না হোক তাতে কিছু এসে যায় না। তাছাড়া সূর্য, চন্দ্র এবং বিভিন্ন গ্রহ আকাশে স্পাইরূপে নির্দিষ্ট পথে চলে এবং তাদের চলন সম্পর্কে যথেষ্ট নির্ভুলভাবে ভবিষাদ্বাণী করা সম্ভব। তা সত্ত্বেও চন্দ্র, সূর্য দেবতা হতে পারেন কিন্তু সে দেবতারা কঠোর নিয়মানুবতী বিধি মেনে চলেন— মেনে চলেন আপাতদৃষ্টিতে কোনো রকম ব্যক্তিক্রম ছাড়াই। অবশ্য যদি জোসুয়ার (Joshua) জনা সূর্যের থেমে যাওয়ার কাহিনী বিশ্বাস না করা যায়।

প্রথমে এই নিয়ম এবং বিধিগুলি শুধুমাত্র জ্যোতির্বিজ্ঞান এবং অন্যান্য কয়েকটি পরিস্থিতিতে সুম্পন্ত ছিল। কিন্তু সভাতার অগ্রগতির সঙ্গে সঙ্গে, বিশেষ করে গত তিনশ বছরে, ক্রমল বেলী বেশী নিয়ম আবিষ্কৃত হয়েছে। এই সমস্ত বিধির সাফলোর ফলে উনবিংল লতান্দীর প্রথম দিকে লাপ্লাস (Laplace) বৈজ্ঞানিক নিমিন্তবাদ (scientific determinism) নামক স্থীকার্য (postulate) মেনে নেন। তাঁর বক্তব্যের ইঙ্গিত ছিল: যে কোনো এক সময়ে মহাবিশ্বের গঠন জানা থাকলে মহাবিশ্বের বিষর্তন নির্দিষ্ট স্পষ্টক্রাপে (precisely) নির্ধারণ করে এরকম এক কেন্ডা বিধির (set of laws) অন্তিত্ব থাকবে।

লাপ্লাসের নিমিন্তবাদের দৃটি অসম্পূর্ণতা ছিল। এই নিমিন্তবাদ বলেনি কি ভাবে বিধিগুলি বেছে নেওয়া হবে, তাছাড়া পৃথিবীর প্রাথমিক গঠন (configuration) কি রকম ছিল সেটাও নির্দিষ্টভাবে বলেনি। এগুলি ছেড়ে দেওয়া হয়েছিল ঈশ্বরের উপর। ঈশ্বরই ঠিক করবেন পৃথিবী কিভাবে শুরু হয়েছিল এবং কি কি বিধি মহাবিশ্ব মেনে নিয়েছিল কিন্তু মহাবিশ্ব একবার শুরু ইওয়ার পর তিনি আর হস্তক্ষেপ করবেন না। কার্যত যে সমস্ত অঞ্চল উনবিংশ শতান্দীর বিজ্ঞানের বোঝার ক্ষমতার অতীত ছিল সেই সমস্ত অঞ্চলেই ঈশ্বরকে বন্দী করে রাখা হয়েছিল।

আমরা এখন জানি লাপ্লাসের নিমিন্তবাদের আশা বাস্তবায়িত হতে পারে না। অন্ততপক্ষে যে শর্তাবলী তার মনে মনে ছিল সে শর্তাবলী অনুসারে তো নয়ই! কণাবদী কলবিদার অনিশ্চয়তার নীতির নিহিতার্থ হল: একটি কণার অবস্থান এবং গতিবেগের মতো কছেকটি সংখ্যার জ্যোড়ের (pairs of quantities) দুটি সম্পর্কে সম্পূর্ণ নির্ভুল ভবিষাদ্বাণী করা সম্ভব নয়।

কণাবাদী বলবিদ্যা এই শরিশ্বিতির মোকাবিলা করে এক শ্রেণীর কণাবাদী তত্ত্বের মাধ্যমে। এই ভস্ত্বপ্রলিতে কণাগুলির যথাযথ ভাবে নির্ধারিত অবস্থান একং গতিবেগ থাকে না, এগুলির প্রতিনিধিত্ব করে একটি তর্ম। এই কণাবাদী তত্ত্বগুলি নিমিত্তবাদী (deterministic) অর্থাৎ তারা কালের সঙ্গে তরক্ষের বিবর্তনের বিধি প্রদান করে। সূত্রাং একটি কালে তরম্বাটিকে জানা থাকলে অনা একটি কালে সেটিকে গণনা করা যেতে পারে। ভবিষাদ্বাণীর অতীত এলৈতিবলো উপাদান তখনই আসে যখন আমরা চেষ্টা করি কণিকার অবস্থান এবং গতিবেশের বাখিথিতে তরন্থকে ব্যাখ্যা করতে। হয়তো সেটা আমাদেরই ভূল: হয়তো কণিকার অবস্থান এবং গতিবেগ বলে কিছু নেই, আছে শুধু তরঙ্ক। আমরা তরন্ধর্যনিকে শুধুমান্ত্র আমাদের পূর্বকল্পিত অবস্থান এবং গতিবেগের ধারণার সঙ্গে খাপ খাওয়াতে চেষ্টা করি। তার ফলে খাপ খাওয়ানোতে যে গোলমাল হয় সেটাই ভবিষ্যগ্রাণীর অতীত হওয়ার আশাতদৃষ্ট কারণ।

কার্যত আমরা বিজ্ঞানের কর্তথ্য পুনর্নির্ধারণ করেছি। সে ক্ষর্তব্য হল এমন বিধি আবিদ্ধার করা যার সাহায্যে আমরা অনিশ্চয়তার বিধি দ্বারা নির্বারিত সীমান্ত পর্যন্ত ঘটনাবলী সম্পর্কে ভবিষাদ্বাদী করতে পারব। কিন্তু প্রশ্নটি থেকে দায়: মহাবিশ্বের প্রাথমিক অবস্থা একং বিধিগুলি বেছে নেওয়া হয়েছিল কি করে এবং কেন?

যে বিধিগুলি মহাকর্য নিয়ন্ত্রণ করে এই বইরে সেই বিধিগুলির উপর আমি বিশেষ গুরুত্ব দিছেছি। তার কারণ, চার জাতীয় বলের ভিতরে মহাকর্য সবচাইতে দুর্বল হলেও মহাকর্যই বৃহৎ মানে (large scale) মহাবিশের গঠন নির্ধারণ করে। প্রায় আধুনিক কাল পর্যন্ত ধারণা ছিল কালের সঙ্গে মহাবিশের কোনো পরিবর্তন হয় না। এই চিন্তাধারার সঙ্গে মহাকর্যীয়ে বিধি থাপ খাম না। মহাকর্য যে সবসময়ই আকর্ষণ করে এই ঘটনার অর্থ: মহাবিশ্ব যে প্রসারিত হচ্ছে নয়তো সন্থুচিত হচ্ছে। বাপেক অপেক্ষরান অনুসারে অতীতে একটি অসীম ধনপ্রের অবস্থা নিশ্চয়ই ছিল এবং ছিল বৃহৎ বিশ্বোরণ (Big Bang)। স্টো হোত কালের কার্যকর আরম্ভ। একইভাবে বলা যায় সমগ্র মহাবিশ্ব আবার চুপ্সে গেলে ভবিষাতে আর একটি অসীম ঘনড়ের অবস্থা আসবে। স্টো হবে বৃহৎ সন্ধোচন (big crunch) এবং সেটাই হবে সময়ের অন্ত। যদি সমগ্র বিশ্ব আবার নাও চুপ্সে বায় তাহলে যে কোনো শ্বানিক অঞ্চলে অননাতা দেখা দেবে এবং সেটা চুপ্সে গিয়ে কৃক্ষগন্থৰ সৃষ্টি করবে। এই কৃক্ষগন্থরগুলির ভিতরে ধারা পড়বে তাদের ক্ষেত্রে সেই পতন হবে কালের অন্তিম। বৃহৎ বিশ্বোরণে এবং অন্যান্য অননাতাগুলিতে সমস্ত বিধি ভেতে পড়ে সুতরাৎ কি ঘটেছিল এবং কিভাবে মহাবিশ্ব শুক্ষ হয়েছিল সে ব্যাপারে ইন্থরের তথনো সম্পূর্ণ স্বাধীনতা থাকে।

কণাবদি বলবিদার সঙ্গে ব্যাপক অপেক্ষবাদ সংযুক্ত করলে এমন একটি সম্ভাবনা মনে আসে যে সম্ভাবনা আগে ছিল না। যেমন: স্থান এবং কাল একত্রে অননাভাবিদ্ধীন এবং সীমানাবিদ্ধীন অথচ সীমিত এবং চারমাত্রিক দ্ধান গঠন করতে পারে। সেটা হবে পৃথিবী পৃষ্ঠের মতো কিছু তার মাত্রা (dimension), হবে বেলি। মহাবিদ্ধে যে সমস্ত অবহুব পর্যক্ষেশ করা যায় তার অনেকগুলিই মনে হয় সেই চিন্তুন নিয়ে ব্যাখ্যা করা যায়— যেমন বৃহৎ মাত্রায় (large scale) সমস্ত্রপত্ব এবং সম্ভাতর মাত্রায় (small scale) সমস্ত্রপত্ব থেকে বিচ্যুতি—যেমন নীহারিকা, তারকা এবং মানুষ। আমরা যে কালের তীর দেখতে পাই সেটাও হয়তো এই চিন্তন ব্যাখ্যা করতে পারে। কিছু মহাকিছ যদি সম্পূর্ণ ব্যহংসম্পূর্ণ হয়, যদি কোনো অননাত্রা (singularities) কিছা সীমানা না থাকে এবং যদি একটি ঐক্যক্ষ তত্ত্বের সাহায্যে তার বিবরণ দেওয়া যায়, তাহলে প্রষ্টা উধ্যেরর ভূমিকা সম্পর্কে তার নিহিত্যর্থ হয় গতির।

[®] Scientific Determinism : পৰ ঘটনাই যানুগের ইচ্ছাবহির্ভূত কোনো না কোনো নিমিণ্ড হইতে উল্লুভ—এই গপনিক মতৰাদ ;---- অনুবাদক

আইনস্টাইন একবার প্রস্কৃতিরিছিলেন শ্রিষ্টাবিদ্ধ গঠনে দিছবের কর্তৃকু স্বাধীনতা (choice) ছিল ?" যদি সীমানাহীনতার প্রস্তাব নির্ভুল হয় তাহলে প্রাথমিক অবস্থা নির্বাচনে প্রায় কোনো স্বাধীনতাই তাঁর ছিল না। তা সন্ত্বেও অবলা যে বিধিগুলি মহাবিদ্ধ মেনে চলবে সে বিধিগুলি নির্বাচনের স্থামিনতা তাঁর থাকত কিন্তু বাস্তবে বেছে নেওয়ার এ বাধীনতাও স্থাতো পুর কেলী একটা কিছু হোত না। হয়তো হেটারোটিক (heterotic) তর্যতন্ত্বের মতো শুরুমাত্র একটি কিন্তা সামান্য কয়েকটি সম্পূর্ণ ঐকাবদ্ধ তন্ত্ব থাকত, সেগুলির হয়তো অন্তানিহিত সামঞ্জস্য থাকত এবং সে তত্ত্ব হয়তো মানুষের মতো জটিল গঠনের জীবের অন্তিত্ব অনুমোদন করত। সে মানুষ এমন জীব যে তারা মহাবিশ্বের বিধি অনুসন্ধান করতে পারে এবং দিশুরের ধর্ম (nature of God) নিয়ে প্রশ্ন করতে পারে।

যদি একটিই সম্পূর্ণ ঐকাবদ্ধ তত্ত্ব থাকে তাহলে সেটাও হবে কমেক কেতা নিয়ম এবং সমীকরণ (set of rules and equations)। कि এই সমীকরণগুলিকে জীবনদান করে এবং তাদের জীবন দান করার জন্য মহানিশ্ব সৃষ্টি করে? বিজ্ঞানের সাধারণ পদ্ধতি হল একটি গাণিতিক প্রতিরূপ গঠন করা। কিছু সে প্রতিরূপ এ প্রশ্নের উত্তর দিতে পারে না: প্রতিরূপ বিবরণ দেবে সেইজন্য একটি মহাবিশ্ব থাকবে কেন? অন্তিত্বের ঝামেলা মহাবিশ্ব কেন নিতে গেল? ঐকাবদ্ধ তত্ত্ব কি এমনই ক্ষমতাশালী (compelling) যে সে নিজেরই অন্তিত্বে নিয়ে আসতে পারে? না কি এর জন্য একটি শ্রষ্টা দরকার? তাই যদি হয় তাহলে মহাবিশ্বর উপর তাঁর আর কি অভিক্রিয়া থাকতে পারে? তাহাড়া তাঁকে কে সৃষ্টি করেছিল?

এখন পর্যন্ত অধিকাংশ বৈজ্ঞানিকরা মহাবিশ্বের প্রকৃতি নিয়ে তারু গঠনে বাস্ত ছিলেন, কিন্তু কেন এই মহাবিশ্ব— এ প্রশ্ন করার সময় তাঁদের হয়নি। অনাদিকে এ প্রশ্ন করা যাঁদের কাজ সেই দার্শনিকরা বৈজ্ঞানিক তত্ত্বের অগ্রগতির সঙ্গে তাল রাখতে পারেন নি। অষ্ট্রাদল শতান্দীতে দার্শনিকরা ভাবতেন বিজ্ঞান তথা সমগ্র মানব জ্ঞান ভাগ্রারই তাঁদের কর্মক্ষেত্র। তাঁরা এই ধরনের প্রশ্ন করতেন: মহাবিশ্বের কি কোনো আরম্ভ ছিল? কিন্তু উনবিংশ ও বিংশ শতান্দীতে বিজ্ঞান হয়ে দাঁড়াল অতিরিক্ত গাণিতিক এবং বিশেষ রক্তম প্রযুক্তিবিদ্যা তিত্তিক। সেইজনা ক্ষেকজন বিশেষজ্ঞ ছাড়া লাশনিক কিন্তা অনা যে কোনো মানুষের কাছেই সে বিজ্ঞান হয়ে দাঁড়াল অনধিগয়া। দার্শনিকরা তাঁদের অনুসন্ধানের ক্ষেত্রে এতই কমিয়ে আনলেন যে এই শতান্দীর সবচাইতে বিখ্যাত দার্শনিক উইটগেনস্টাইন (Wittgenstein) ক্যন্তেন—"দর্শনের কর্মক্ষেত্রের তিতরে একমাত্র অবশিষ্ট ক্ষেত্রে ভাষা বিশ্লেষণ"। আর্রিক্টোটল ও কান্টের বিরাট ঐতিহ্যের কি অধঃগতন!

কিন্তু আমরা যদি সম্পূর্ণ একটি তত্ত্ব আবিষ্কার করি তাহলে শুধুমাত্র কয়েকজন বৈজ্ঞানিকেরই নয়, কালে কালে সে তত্ত্ব বোষণামা হওয়া উচিৎ সবার, অন্তওপক্ষে বোষণামা হওয়া উচিত সে তত্ত্বের মূল বেখাগুলি। তাহলে আমরা, দার্শনিকরা, বৈজ্ঞানিকরা, এমন কি সাধারণ মানুষরাও এই আলোচনায় অংশগ্রহণ করতে পারব: আমান্দের এবং মহাবিশ্বের অন্তিত্বের কারণ কি? আমরা যদি এ প্রপ্লের উত্তর খুঁজে পাই তাহলে সেটাই হবে মানবিক যুজির চুড়ান্ত জন্ম-- তার কারণ তখন আমরা জানতে পারব ইপ্রবের মন। স্বাচা বেড়ে চলছিল। সেই সময় লীবনিজ একটি তুল করলেন। তিনি বাগালী মেটানোর Mternet.com
জন্য আগদীল করলেন রয়াল সোসাইটির কাছে। প্রেসিডেন্ট হিসাবে নিউটন অনুসন্ধানের
জন্য একটি 'নিরশেক্ষ' কমিটি গঠন করেন। ঘটনাচক্রে কমিটির সবাই ছিলেন নিউটনের
বন্ধু। কিছু এটাই সব নয়। তারপর নিউটন কমিটির রিপোটিট নিজেই লেখেন এবং রয়াল
সোসাইটিকে দিয়ে প্রকাশ করান। সরকারীভাবে লীবনিজকে কুন্তীলক* (plagiarist) বলে
অপরধী সাবাস্ত করা হয়। এতেও খুশী না হয়ে নিউটন রয়াল সোসাইটির নিজস্ব পত্রিকায়
লেখকের নাম না দিয়ে ঐ রিপোটের একটি সমালোচনা প্রকাশ করেন। শোনা যায়, লীবনিজের
মৃত্যুর পর নিউটন বলেছিলেন— ''লীবনিজের মন ভেঙে দিয়ে (breaking his heart)
তিনি বুব খুশী হয়েছেন।''

এই দৃটি ছন্দের আগেই নিউটন কেম্ব্রিক্ষ এবং শশুত সমাজ তাগে করেছেন। তিনি কেম্ব্রিক্ষে এবং পরবর্তীকালে পার্লামেন্টে ক্যাথলিক বিরোধী রাজনীতিতে সক্রিয় ছিলেন। পুরস্কারম্বরূপ তাঁকে রাজকীয় টাঁকশালের (Royal Mint) গুয়ার্ডেন (Warden) পদ দেওয়া হয়। এই পদে প্রাক্তর অর্থাগমের সুযোগ ছিল। এই পদে প্রাকার সময় তিনি তাঁর কৃটিলতা এবং তীব্র বিশ্বেষের প্রতিভা সামাজিকভাবে জনেক গ্রহণীয় কর্মে নিয়োগ করেন। এখানে তিনি সাঞ্চলোর সঙ্গে জালিয়াতির বিক্রছে সংগ্রাম করেন এবং বেশ কয়েকজনকৈ প্রাণদণ্ড দেওয়ার বাবস্থা করেন।

শন্কাৰ

(Glossary)

Absolute Zero

চরম শীতলতা-- সস্তাব্য সর্বনিমু তাপমাত্রা-- এ অবস্থায়

বস্তুতে কোনো তাপপক্তি থাকে না।

Acceleration

ত্বণ- যে হারে একটি বস্তুপিণ্ডের গতিবেগের পরিবর্তন

इस् ।

Anthropic Principle

নরহীয় নীতি— আমরা মহাবিশ্বকৈ ফেভাবে দেখি সেভাবে

দেখার কারণ এটা যদি অনারকম হোত তাহলে পর্যবেক্ষণ

করার জন্য আমরা এখানে থাকতাম না।

Antiparticle

: বিপরীত শ্বণিকা-- প্রত্যেক ধরনের পদার্থকণিকার অনুরূপ

একটি বিপরীত কণিকা আছে। কণিকার সঙ্গে বিপরীত কণিকার সংঘর্ষ হলে তারা বিনাশ প্রাপ্ত হয়। অবশিষ্ট

থাকে শুধুমাত্র শক্তি।

Atom

পরমাণু-- সাধারণ পদার্থের মূলগত একক- অভিকৃত্ত

একটি কেন্দ্ৰক (ভাতে থাকে প্ৰোটন একং নিউট্ৰন) একং সেটাকে প্ৰদক্ষিণরত কয়েকটি ইলেক্ট্ৰন দিয়ে এগুলি

তৈরী।

Big Bang

বৃহৎ বিশেষরণ- মহাবিশ্বের আরস্তের অনন্যতা।

Big Crunch

বৃহৎ সঞ্জোচনু-- মহাবিশ্বের অস্ত্রিমের জনন্যতা।

Black hole

कृष्कशङ्ख-- श्वान-काटनतं अप्रान प्रकान राजारन प्रशासन

এত বেশী শক্তিশালী যে সেখান থেকে কিছুই নিৰ্গত হতে

পারে না- এমনকি আলোকও নির্গত হয় না (ষষ্ঠ

অধ্যায়)।

Chandrashekhar

limit

চন্দ্রশৈখর সীমা- একটি স্থিতিশীল শীতল তারকার সম্ভাব্য

সর্বের্নান্ড ভর। ভর এর চাইতে বৈশী হলে তারকাটি

চুপ্রেস কৃঞ্চগহুরে পরিণত হবে।

^{*}कृष्टिनक- एर व्यत्नाव लिया निरक्त नाट्य समाप, Plagiarist.

294	কালের সংক্রিপ্ত ইতিহাস	
Conservation of	banglainternet.co	m
energy	: শক্তির নিডাতা বিজ্ঞানের সেই বিধি যে বিধি অনুসারে Field শক্তি (কিথা তার তুলামানের তর) সৃষ্টিও করা যায় না, ধ্বংসঙ করা যায় না।	 ক্ষেত্র— এমন একটি জিনিব যার ছান-কালে সর্ববাালী অক্তিত্ব থাকে। কণিকা এর বিপরীত—এককালে একটি মাত্র বিন্দৃতে এর অক্তিত্ব।
Coordinates	: সাত্রা— যে সংখ্যান্তলি স্থানে এবং কালে একটি বিন্দুর Frequer অবস্থান নির্দেশ করে। Gamma	ray : অতি ক্ষুদ্র তরক্ষদৈর্ঘ্য সম্পন্ন বিদৃংং-চুম্বকীয়
Cosmological		তরক্ষ—তেজন্ত্রিয় অবক্ষয় কিছা মৌলকণাগুলির সংঘর্ষের
constant	 মহাবিশ্বতাত্ত্বিক প্রকল- স্থান-কালকে একটি অন্তর্নিহিত সম্প্রসারণ প্রচেষ্টা দান করার স্থান্য আইনস্টাইন ব্যবহৃত একটি গাণিতিক কৌশল। 	ফলে এগুলি তৈরী হয়। l relativity : ব্যাপক অপেক্ষবাদ আইনস্টাইনের তত্ত্ব। এই তত্ত্বের ভিত্তিতে [*] রয়েছে এই চিস্তন : প্রতিটি পর্যবেক্ষক
Cosmology	: মহাবিশ্বতন্ত্ৰ— সমগ্ৰ মহাবিশ্ব সম্বন্ধীয় তন্ত্ৰ-গকে শা।	সাপেক্ষ (তাঁরা যেভাবেই চলমান হোন না কেন)
Electric charge	: বৈন্যুত আধান কণিকার এমন একটি ধর্ম ধার জনা কণিকাটি সমরূপ (similar) (কিম্বা বিপরীত) চিহ্নযুক্ত আধানকে বিকর্ষণ (কিম্বা আকর্ষণ) করে।	বিজ্ঞানের বিবিশুলি অভিন্ন থাকবে। চারমান্ত্রিক স্থান-কান্সের বক্রতার বাধিবির সাহাযো এই ভত্ত মহাকবীয় বলকে ব্যাখ্যা করে।
Electromagnetic	Geodes	
force	: বিদ্যুৎ -চুম্বকীয় বল বৈদ্যুত অধানসম্পন্ন একাধিক	(কিন্তা দীৰ্ঘতম) পথ।
,	The state of the s	unification
Electron	শন্তির ভিতরে শক্তিমন্তায় দ্বিতীয়। energy : ইলেক্ট্রন— অপরা (negative) বৈদ্যুতিক আধান (nega- tive charge) যুক্ত একরকম কণিকা। এগুলি পরমাপুর ক্রেন্তকে প্রদক্ষিণ করে।	মহান ঐক্যকারী শক্তি— এমন শক্তি যার চাইতে বৃহত্তর শক্তি হলে (বিশ্বাস করা হয়) বিদ্যুৎ-চুম্বকীয় বল, দুর্বল বল, একং সবল বলের পরম্পরের ভিতরকার পার্থকা বোঝা যায় না।
Electroweak	Grand V	
unification energy	Theory : বৈদাৎ দুর্বল ঐকাকরি৷ শক্তি— যে বলের তুলনায় (প্রায়	(GUT) : মহান ঐকাবদ্ধ তত্ত্ব— যে তত্ত্ব বৈদাৎচুম্বকতত্ত্ব, সবল বল এবং দুর্বল বলকে ঐকাবদ্ধ করে।
	১০০ Ge V) বৃহস্তর হলে বিদাৎ-চুম্বকীয় বল এবং Imagina দুর্বল বলের ভিতরকার পার্থক্য লুপ্ত হয়।	ary time : কল্পনিক কাল— কাল্পনিক সংখ্যা ব্যবহার করে যে কাল মাশা হয়।
Elementary particle	: মৌলকণা— বিশ্বাস করা হয়, এই কণাগুলির আর Light co বিভাজন সঞ্চব নয়। : ঘটনা— স্থান এবং কাল দিয়ে নির্দিষ্ট স্থান-কালের একটি	one : আলোক শব্ধু— স্থান-কালের এমন একটি পৃষ্ঠ যে পৃষ্ঠ একটি বিশেষ ঘটনার মধ্য দিয়ে চলমান আলোকরশ্মির সম্ভাব্য অভিমুখ নির্দেশ করে।
27-944,		econd (Year) : चारमान अन रगरकर७ (वहरत) रय मृतक व्यक्तिम
Event horizon	: ঘটনা দিগন্ত কৃষ্ণগহুরের সীঘানা।	कट्त ।
Exclusion principle	অপবর্জন তত্ত্ব— দুটি সমস্কপ চক্রল ত্রুলবিকার দুটিরই	ic field : ক্টেম্বক ক্ষেত্র— যে ক্ষেত্র ক্টেম্বক বলের জন্য দায়ী। ইদানীং কৈয়ুৎ ক্ষেত্রের সঙ্গে একত্রে বৈদ্যুৎ চুম্বক ক্ষেত্রের অন্তর্ভুক্ত হয়েছে।

Mass

কালের সংক্রিপ্ত ইতিহাস ভর- একটি বস্তুপিঙে পদার্থের পরিমাণ। তার জড়ত্ব (inertia) কিম্বা তুরণের (acceleration) প্রতিবন্ধ (resistance) |

দশা-- তরকের ক্ষেত্রে একটি বিশেষ কালে তার নিজস্ব জীবন চক্রের (cycle) অবস্থান : তরঙ্গটি তার শীর্ষে (crest), না পাদে (trough- পাদ-তরঙ্গপাদ), না তার মাঝামাঝি কোনো একটি বিদ্যুত।

Photon Planck's quantum আলেককণা-- আলোকের একটি কণিকা বা কোয়ান্টাম।

প্লাঙ্কের কণিকানীতি– যে চিম্ভাধারা অনুসারে আলোক principle

[কিম্বা যে কোনো চিরায়ত তরঙ্গ (classical wave) শুধুমাত্র বিবিক্ত কণিকারূপে (in discrete quanta) নিগঁত হতে পারে কিম্বা বিশোষিত হতে পারে। সে কণিকার শক্তি তার কম্পন সংখ্যার (frequency)

আনুপাতিক (proportional)।

পজিট্রন- ইলেকট্রনের বিপরীত কণিকা (পরা আধান Positron

যুক্ত)।

Primordial black

আদিম কৃষ্ণগহর- মহাবিশ্বের অতি আদিম অবস্থায় সৃষ্ট hole

গহর ৷

আনুগাতিক-- "x-yuর আনুগাতিক"-- এ কধার অর্থ y Proportional

কে কোনো সংখ্যা দিয়ে গুণ করলে x কেও সেই সংখ্যা দিয়ে গুণ ব্রুরা হবে। "x, y-এর বিপরীত আনুপাতিক (inversely proportional)" কথার অর্থ y কে কোনো সংখ্যা দিয়ে গুণ করলে x কে সেই সংখ্যা দিয়ে ভাগ

করতে হবে।

: প্রোটন- পরা (positive) আধানসম্পন্ন কণিকা। Proton

অধিংকাশ পরমাণুর কেন্দ্রকের প্রায় অর্ধেক প্রোটন দিয়ে

গঠিত।

Quantum

क्नावमि क्रांक्ना- धार्कत क्नावमि नीछि এवर mechanics

হাইজেনবার্গের (Heisenberg) আনিশ্চয়তার নীতি দিয়ে

গঠিত তত্ত্ব (চতুর্থ অধ্যায়)।

কার্ক- একটি (আধানযুক্ত) মৌলকণিকা। এই কণিকা Ouark

সকল বল বোধ (feels) করে। প্রোটন এবং নিউটন

তিনটি করে কার্ক দিয়ে গঠিত।

Microwave back-

পশ্চাৎপট মাইক্রোভরঙ্গ বিকিরণ— আদিম উত্তপ্ত ground radiation

মহাবিশ্বের দীপ্তি থেকে বিকিরণ। এত বেশী গোহিত বিচ্যুতি হয়েছে যে এখন আর আলোকরূপে প্রতিভাত

হয় না। প্রকাশ পায় মাইক্রো তরঙ্গত্রপে (কয়েক

সেন্টিমিটার তর্নঙ্গদৈর্ঘের বেতার তরঙ্গ) i

নগ্ন অনন্যতা- কৃষ্ণগহুর দিয়ে পরিবৈষ্টিত নয় Naked singularity

স্থান-কালের এই রকম অনন্যতা।

নিউট্টিনো- ধরম লঘু (সম্ভবত ভরহীন) মৌলপদার্থ Neutrino

কণা ৷ শুধুমাত্র দুর্বল বল এবং মহাকর্মই এগুলিকে

প্রভাবিত করে।

বৈদ্যুতিক আধানশূন্য কণিকা-- প্রোটনের সঙ্গে এর Neutron

সাদশ্য খবই বেশী। অধিকাংশ পরমাণুর কেন্দ্রকৈর

কণিকাগুলির প্রায় অর্থেকই নিউট্রন (Neutron)।

নিউট্রন তারকা-- বিভিন্ন নিউটুনের মধাবতী অপবর্জন Neutron star

ভত্তভিত্তিক বিকৰ্ষণ (exclusion principle repu-

Ision) দ্বারা রক্ষিত একটি শীতল তারকা।

No boundary

সীমানাহীনতার অবস্থা— মহাবিশ্ব সীমিত (কাল্পনিক condition

का(न) किन्नु नीयानाहीन এই চিন্তাধারা।

কেন্দ্রকীয় সংযোজন- যে পদ্ধতিতে দৃটি কেন্দ্রকের সংঘ্ Neuclear fusion

হয় এবং তারা সংযোজিত হয়ে একটি অধিক গুরুভার

কেন্দ্রক সৃষ্টি করে- সেই পদ্ধতির নাম।

কেন্দ্রক-- পরমাণুর কেন্দ্রীয় অংশ। এতে থাকে শুধু Neucleus

প্রোটন এবং নিউট্রন। এগুলি সবল বলের দ্বারা পরস্পর

সংযুক্ত থাকে।

কণিকাত্ত্ররণ যন্ত্র-- এমন একটি যন্ত্র যা বিদ্যুৎ চুম্বকের Particle accelerator

সাহায়ো বিদাৎ আধান যুক্ত চলমান কণিকাগুলিকে

অধিকতর শক্তি দান করে ত্বরিত করতে পারে।

		কালের সংক্ষিপ্ত ইতিহাস	শত্ৰকোষ		380
>>>			Paretinopolic Pareti		যে অবস্থা কালের সঙ্গে পরিবর্তনশীল নয়— শ্বির হারে
Radar	:	রাডার- এই তম্ম রোডিও তরঙ্গ স্পর্কনিক্রিটারের radionternet.	Stationary State	•	চক্রলশীল একটি গোলক স্থিতিশীল। তার কারণ, যে
		waves) ব্যবহার করে বিভিন্ন বস্তুর অবস্থান নির্ণয় করে।	+		কোনো মুহুর্তেই এর রূপ অভিন্ন হবে, যদিও এটা ছির
		পদ্ধতি: একক একটি স্পন্দন বস্তুটিতে সৌঁছে			सम् ।
		প্রতিফলিত হয়ে ফিরে আসতে যে সময় লাগে সেই সময়	Strong force	-2	সবল বল— চারটি মূলগত বলের ভিতরে সব চাইতে
The discontinue		মাপা। তেজন্ত্রিয়তা— এক প্রকারের পারমাণবিক কেন্দ্র			শতিলাদী, কিন্তু এর বিস্তারের\(পাল্লা) অঞ্চল হুস্বতর।
Radioactivity	-	মতঃস্ফুর্তভাবে ভেঙে অন্য প্রকারের পারমাণবিক কেন্দ্র			এই বন্ধ কার্কগুলিকে প্রোটন এবং নিউট্রনের ভিতরে
		তৈরী হওয়া।			ধরে রাখে এবং প্রোটন ও নিউট্রনকে একত্রিত করে
Red shift		লোহিত বিচ্যুক্তি যে তারকা আমাদের কাছ খেকে দূরে			পরমাণু গঠন করে।
ned shirt		অপসরণ করছে সেই তারকা থেকে নির্গত আলোকের	Uncertainty		0 00 0
		লোহিত বর্ণ হওয়া। এর কারণ ডপ্লার অভিক্রিয়া (Do-	principle	÷	অনিশ্চয়তার নীতি— একটি কণিকার অবস্থান এবং
		ppler effect) I-			গতিকো সম্পর্কে নির্ভুলভাবে নিশ্চিত হওয়া সম্ভব নয়।
Singularity	:	অনন্যতা স্থান-কালের এমন একটি বিন্দু যেখানে			একটি সম্পর্কে জ্ঞান যত নির্ভুল হতে জ্ঞনাটি সম্পর্কে জ্ঞান তত কম নির্ভুল হতে।
		স্থান-কালের বক্রতা অসীম হয়।	Virtual particle		কল্লিত কণিকা—কণাবাদী বলবিদ্যায় যে কণিকাকে
Singularity			viitoai patticic	•	কখনোই প্রত্যক্ষভাবে সনাক্ত করা যায় না, কিন্তু যার
theorem	-	অনন্যতা উপপাদ্য এই উপপাদ্যে দেখানো হয়েছে			অক্তিত্বের মাপনযোগ্য ক্রিয়া রয়েছে।
		কয়েকটি বিশেষ পরিস্থিতিতে জনন্যতা অবশ্যই থাকবে।	Wavelength		একটি তরক্ষের ক্ষেত্রে সরিহিত দৃটি তরক্ষের শীর্ষ কিম্বা
		বিশেষ করে মহাবিশ্ব অবশাই শুকু হয়েছিল অনন্যতা			পাদের দূরত্ব।
		मि द्रग्र ।	Wave/particle		
Space-time	:	স্থান-কাল— যে চারযাত্রিক স্থানের বিন্দুগুলি ঘটনা।	duality	;	তরঙ্গ/কণিকা দ্বৈততা— কণাবাদী বলবিদ্যান্ত তরঙ্গ এবং
Spatial		স্থানিক যাত্রা— স্থান-কালের স্থানের মতো তিনটি মাত্রার			কণিকার ভিতরে কোনো পা র্থক্য নেই—এই চিন্তন ।
dimension		যোলক ৰাত্ৰাল হাল-কালের হালের মতো তেলাচ ৰাত্ৰার যে কোনো একটি মাত্রা অর্থাৎ কালিক মাত্রা ছাড়া যে			কণিকা অনেক সময় তরক্ষের মতো আচরণ করে, আবার
		কোনো একটি মাত্রা।	/		তর্ম অনেক সময় কণিকার মতো আচরণ করে।
Special		Saile to an and a state of the	Weak force	÷	দুর্বল বল–চারটি মূলগত বলের ভিতরে দুর্বলতার দিক
relativity	:	বিশিষ্ট অপেক্ষবাদ— বৈজ্ঞানিক বিধিগুলি অবাধে চলমান			থেকে দ্বিতীয়। এর বিস্তারের (পাক্সা) অঞ্চল খুবই কম।
z o zacz r r r y		সমস্ত পর্ববেক্ষক সাপেক্ষই অভিন্ন হবে— তাদের দ্রুতি			সমস্ত পদাৰ্থকণাকেই এই বল প্ৰভাবিত করে কিছ বল বহনকারী কণিকাগুলিকে প্ৰভাবিত করে না।
		যাই হোক না কেন, এই চিম্ভাধারার ভিত্তিতে গঠিত	Weight		ওজন—একটি বস্তুপিতের উপরে মহাক্ষীয় ক্ষেত্র দ্বারা
		আইনস্টাইনের তম্ব।	W Cigite	•	প্রযুক্ত বল। ওজন ভরের আনুপাতিক বিদ্ধ ভর আর
Spectrum	:	বর্ণালী একটি বিদৃাৎ-চুম্বকীয় তরঙ্গকে তার উপাদানের	ia-		ওন্ধন অভিন্ন নয়।
		বিভিন্ন স্পন্দাক্তে ভাগ করা।	White dwarf	:	শ্বেত বামন—একটি সৃহিত শ্বেত তারকা। ইলেক্ট্রনগুলির
Spin	:	চক্রশ— মৌল কণাগুলির একটি অন্তর্নিহিত ধর্ম। এর			অন্তৰ্বতী অপবৰ্জন তত্ত্বের বিকর্ষণের দ্বারা পোৰিত।
		সঙ্গে চক্রণ শক্তের দৈনন্দিন অর্থবোধের একটি সম্পর্ক			

রয়েছে ব্রিপ্ত দৃটি অর্থ অভিন্ন নয়।